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S O C I A L  S C I E N C E S

The use of differential privacy for census data and its 
impact on redistricting: The case of the 2020 U.S. Census
Christopher T. Kenny1, Shiro Kuriwaki2, Cory McCartan3, Evan T. R. Rosenman4,  
Tyler Simko1, Kosuke Imai1,3*

Census statistics play a key role in public policy decisions and social science research. However, given the risk of 
revealing individual information, many statistical agencies are considering disclosure control methods based on 
differential privacy, which add noise to tabulated data. Unlike other applications of differential privacy, however, 
census statistics must be postprocessed after noise injection to be usable. We study the impact of the U.S. Census 
Bureau’s latest disclosure avoidance system (DAS) on a major application of census statistics, the redrawing of 
electoral districts. We find that the DAS systematically undercounts the population in mixed-race and mixed-partisan 
precincts, yielding unpredictable racial and partisan biases. While the DAS leads to a likely violation of the 
“One Person, One Vote” standard as currently interpreted, it does not prevent accurate predictions of an individual’s 
race and ethnicity. Our findings underscore the difficulty of balancing accuracy and respondent privacy in the Census.

INTRODUCTION
In preparation for the official release of the 2020 Census data, the 
U.S. Census Bureau has developed a disclosure avoidance system 
(DAS) to prevent Census responses from being linked to specific 
individuals (1). The DAS is based on differential privacy technology, 
which adds a certain amount of random noise to Census tabulations. 
The Bureau has been required by law to prevent the disclosure of 
information about Census participants (13 U.S. Code § 9) and has 
implemented disclosure avoidance methods since 1960. However, 
their decision to incorporate differential privacy and the necessary 
subsequent postprocessing steps in the 2020 Census, as implemented 
in the DAS, has been controversial. Some scholars have voiced con-
cerns about the potential negative impacts of noisy data on public 
policy and social science research, which critically rely upon Census 
data (2–6).

The U.S. decennial census serves as an important and unique 
case study on the impact of differential privacy. Its statistics define 
the drawing of legislative districts, determine the distribution of 
federal funds for more than a hundred government programs, and 
are extensively analyzed by social scientists (7, 8). Other countries 
and international organizations, including the European Union, 
United Kingdom, and Australia, have adopted or are considering 
the adoption of differential privacy technology (9–11). In addition 
to its decennial census, the U.S. Census Bureau has recently used dif-
ferential privacy as their “privacy definition” in a national block-level 
data release on commuting patterns (12). The Bureau is now con-
sidering adopting a similar approach for other data products, such 
as the American Community Survey (13).

It is a common misconception that a differentially private census 
only involves injecting random noise (14, 15). Simple noise injection 
may lead to geographies with negative population values, create 
small discrepancies in population counts even at high levels of 
aggregation like states, and create inconsistencies across millions of 

tabulations that the Census must publish. Therefore, the U.S. Census 
Bureau has adjusted its differentially private counts with various 
postprocessing steps to prevent these negative counts and ensure 
that population counts at several geographies are exact and tables 
are consistent. Although this postprocessing is not formally part of 
differential privacy, the two are inseparable because national statis-
tical agencies must ensure the facial validity of census products 
while simultaneously protecting respondents’ privacy. The question 
is whether these sensible adjustments unintentionally induce sys-
tematic (instead of random) discrepancies in reported Census 
statistics (16).

Here, we empirically evaluate the impact of the DAS, both the 
noise injection and postprocessing, on redistricting and voting rights 
analysis across local, state, and federal contexts. These districts vary 
greatly in their size and underlying geographies. This heterogeneity 
makes redistricting an interesting case for assessing the impact of 
differential privacy in national statistical products. Although the 
Census Bureau plans to only release the DAS-protected 2020 Cen-
sus tabulations, in April 2021, they published a DAS version of the 
2010 tabulations to collect public comment. Using these demon-
stration data, we conduct our empirical evaluation under a likely 
scenario, in which practitioners, map drawers and analysts alike, treat 
these DAS-protected data “as is” as they have done in the past, without 
accounting for the DAS noise generation mechanism.

First, we find systematic biases in the DAS-protected data along 
racial and partisan lines. The DAS has a tendency to transfer popu-
lation across geographies in ways that artificially reduce racial and 
partisan heterogeneity. This is, in part, due to the postprocessing 
procedure, which gives a priority to the accuracy of population counts 
for the largest racial group in a given area.

Second, we use a set of recently developed simulation methods 
that can generate large numbers of realistic redistricting maps under 
a set of legal and other relevant constraints, including contiguity, 
compactness, population parity, and preservation of communities 
of interest and counties (17–24). These simulation methods are useful 
because they allow us to understand the systematic impacts of DAS 
on the redistricting process and evaluation by generating a large 
number of realistic redistricting plans under various conditions. 
They also have been extensively used by expert witnesses in recent 

1Department of Government, Harvard University, Cambridge, MA 02138, USA. 2Depart-
ment of Political Science, Stanford University, Stanford, CA 94305, USA. 3Department 
of Statistics, Harvard University, Cambridge, MA 02138, USA. 4Data Science Initiative, 
Harvard University, Cambridge, MA 02138, USA.
*Corresponding author. Email: imai@harvard.edu

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

D
ow

nloaded from
 https://w

w
w

.science.org at H
arvard U

niversity on O
ctober 06, 2021

mailto:imai@harvard.edu


Kenny et al., Sci. Adv. 2021; 7 : eabk3283     6 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 17

court cases on redistricting, including Common Cause v. Lewis (2020), 
Rucho v. Common Cause (2019), Ohio A. Philip Randolph Institute 
v. Householder (2020), and League of Women Voters of Michigan v. 
Benson (2019).

We find that the noise introduced by the DAS can prevent map 
drawers from creating districts of equal population according to 
current statutory and judicial standards. For example, over the past 
half century, the Supreme Court has firmly established the principle 
of “One Person, One Vote”, requiring states to minimize the popula-
tion difference across districts based on the Census data. This applies 
even if differences are theoretically smaller than known enumeration 
error (Karcher v. Daggett 1983). In many cases, actual deviations from 
equal population, as measured using the original Census data, will be 
several times larger than as reported under the DAS-protected data. 
The magnitude of this problem is especially acute for smaller dis-
tricts, such as state legislative districts and school boards.

The noise introduced by the DAS also has partisan and racial 
implications. We find that DAS yields unpredictable changes to 
district-level partisan outcomes and may change the conclusions of 
redistricting analyses used to identify partisan gerrymandering. Our 
analyses demonstrate that precincts that are heterogeneous along 
racial and partisan lines are systematically undercounted by the DAS.  
In some cases, these perturbations can lead to a change in the number 
of majority-minority districts (MMDs) if one follows the current 
standard set by courts (e.g., Thornburg v. Gingles 1986, Shaw v. Reno 
1993, Bartlett v. Strickland 2009, and Shelby County v. Holder 2013).

Last, we find that the noise-induced DAS data do not degrade the 
overall prediction accuracy of individuals’ race based on the Bayesian 
Improved Surname Geocoding (BISG) methodology, which com-
bines the Census block-level proportion of each race with a voter’s 
name and address (25–27). Redistricting analysis for voting rights 
cases often necessitates this individual-level prediction because most 
states’ voter lists do not include individual race. We also show that 
the DAS-protected data can still alter individual-level race predic-
tions constructed from voter names and addresses. These changes 
can have a large impact on the analysis of local redistricting cases. 
In a reanalysis of a recent Voting Rights Act case, we find that pre-
dictions generated using DAS-protected data underpredict mi-
nority voters and result in fewer MMDs.

We conclude by discussing the implications of our findings for 
future redistricting and voting rights analysis under the privacy-
protected Census data. Our article represents the broadest look at 
the impact of the new DAS methodologies on redistricting use to 
date. Prior research applied related redistricting simulation method-
ologies to simulated DAS data, as we do, but used an old version of 
the DAS algorithm rather than the latest demonstration data release 
(28). These authors make a valuable contribution by demonstrating 
the continued usability of weighted regressions for voting rights 
analysis. While their primary focus is on the analysis of one county 
in one state, we cover several levels of redistricting across many 
states. We can thus examine the consequences of DAS-induced error 
across a variety of contexts and use cases.

RESULTS
Differential privacy and postprocessing
The Census Bureau has developed the TopDown algorithm as the 
DAS of the 2020 Census (1). The algorithm adds statistical noise 
to implement differential privacy and then makes postprocessing 

adjustments. Differentially private systems such as the Census DAS 
provide some protection against the risk of “reconstruction attacks,” 
which attempt to identify a specific individual in the dataset using 
external information. We examine the April 2021 demonstration 
data before the Census release of 2020 P.L. 94-171 data, which many 
states use for redistricting. The demonstration data are a reprocessed 
release of the decennial census data from 2010 for the purpose of 
analyzing the suitability of data processed through the DAS.

The DAS is a new approach to privacy in decennial data releases. 
Releases from 1990 to 2010 relied on “swapping” for disclosure lim-
itation (29). Swapping is the process of switching data entries in a 
controlled way to provide some protection to those with “rare and 
unique responses” (30).

Below, we briefly summarize the most recently released version 
of the DAS algorithm, which combines differentially private noise 
injection with postprocessing. We then document the nature of the 
discrepancies induced by these demonstration data when compared 
to the original release of 2010 Census data. In particular, we find 
that the DAS artificially shifts populations from racially mixed areas 
to homogeneous areas. In the subsequent section, we use redistricting 
simulation analysis to show how these population discrepancies are 
likely to affect redistricting plans.
The U.S. Census DAS
The first step of the DAS pipeline is to add independent, symmetric 
Laplace or geometric noise to counts in each of numerous published 
Census tables. The differential privacy provides a specific definition 
of privacy: a probabilistic guarantee that empirical conclusions are 
relatively unaffected by the inclusion or exclusion of a particular 
individual from the dataset (31). In the case of noise injection as in 
the DAS, the amount of noise in each file is controlled by the privacy 
loss budget, denoted by ϵ. Higher values of ϵ exponentially increase 
the tolerance of what is an acceptable degree of disclosure probability. 
Formally, differential privacy caps at exp(ϵ) the ratio between the 
likelihoods of a certain output in a pair of datasets that only vary in 
the inclusion of a single individual. Thus, the additional certainty 
(in terms of odds) that someone can gain about a particular conclu-
sion will change by at most a factor of exp(ϵ) if an individual is 
included in the dataset. We note that, because census takers will 
attempt to enumerate every individual in the country regardless of 
voluntary participation, it is debatable whether differential privacy 
is a suitable definition of privacy for census data.

In April 2021, the Bureau implemented DAS-12.2 on the 2010 
Census and released it as a demonstration of the version of the DAS 
that they plan to use in the release of the 2020 decennial census 
statistical tables. The numbers in the version name represent the 
privacy loss budget. DAS-12.2 represents a relatively high privacy 
loss budget [ϵ = 12.2, with exp(12.2) ≈ 2.0 × 105] to achieve the 
accuracy targets at the expense of greater privacy loss, whereas an 
earlier version, DAS-4.5, used a lower privacy loss budget at the ex-
pense of worse accuracy [ϵ = 4.5, with exp(4.5) ≈ 9.0 × 101]. Both 
of these privacy loss budgets are high (that is, enforce less stringent 
privacy guarantees and retain higher accuracy) relative to standard 
reference points (32). There may not be an overlap between the values 
of ϵ that are considered stringent enough for privacy purposes and 
high enough for redistricting purposes.

In addition, the Census Bureau postprocesses the noisy tabulation 
data to ensure that the resulting public release data meet a handful 
of criteria. First, they must be self-consistent such that, for example, 
the total population for each block nested within a tract adds up to 
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the tract population. In addition, they must abide by several com-
mon sense constraints, including the avoidance of negative counts. 
Last, certain aggregate statistics such as state-level total population 
counts must exactly equal the Census Bureau’s best estimate. Counts 
that remain fixed are considered invariant counts in the Census 
Bureau’s terms. This postprocessing works by using an optimizing 
routine to find a set of integer counts that meet all the constraints 
and are as close as possible to the noise-infused data. However, the 
exact specifics of this optimizing routine are not currently public.

The aggregate geographic levels for which the Census officially 
accounts, such as states, counties, and tracts, are called on-spine 
geographies, while off-spine geographies include precincts and voting 
districts (VTDs). The DAS postprocessing is targeted for accuracy 
and consistency of on-spine geographies. Notably, to increase accu-
racy on off-spine units, the Census Bureau has defined special block 
groups that do not directly correspond to the block groups in the 
final data release.

The Census Bureau has not released demonstration data that 
only contain added noise (the first step) before postprocessing (the 
second step). Without these noisy tabulation data, it is impossible to 
cleanly separate the effects of postprocessing from those of noise 
injection. Nonetheless, the existence of the 2010 demonstration data 
alongside the released 2010 Census allows us to analyze the suitability 
of the totality of the demonstration data for redistricting purposes.

Last, a complete theoretical investigation of the DAS remains 
difficult partly because of its complex postprocessing procedure and 
is beyond the scope of this article. Cohen et al. (28) examine a pre-
vious version of the TopDown algorithm and present some theoretical 
analysis of its simplified version, which they call “ToyDown.” Our 
empirical investigation complements their theoretical study and 
shows how the most up-to-date DAS affects redistricting in practice.

Racial and partisan undercounting biases
To evaluate the impact of the new DAS on redistricting plan drawing 
and analysis, we generated 10 sets of redistricting datasets, described 
in Table 1. These cases cover federal, state, and local offices across a 
diverse set of states. Using R packages “geomander” and “ppmf” (33, 34), 
we create precinct-level datasets that have three versions of total 
population counts: the original 2010 Census, the DAS-12.2 data, 
and the DAS-4.5 data.

We first examine the nature of the population variation induced 
by differential privacy and postprocessing at the level of VTDs. Al-
most by definition of differential privacy, there is meaningful varia-
tion in how VTDs’ populations change as a result of the DAS, even 
among those with similar racial and partisan characteristics. As a 
result, it is difficult to discern systematic patterns by observation 
alone. We therefore fit a generalized additive model (GAM) to the 
precinct-level population errors using various characteristics of the 
precinct. This model decomposes the overall changes into a system-
atic component, which varies according to the racial and partisan 
composition of a precinct, and a residual noise component, which 
has a mean of zero conditional on the local demographic composi-
tion. While the residual noise may lead to concentrated harms in 
certain small geographic communities, once aggregated to larger 
geographic areas, it will tend to cancel out. The systematic compo-
nent, however, will not necessarily cancel, and hence, it is of partic-
ular interest to identify and quantify any such systematic error.

Our predictors for the GAM include the two-party Democratic 
vote share of elections in the precinct, turnout as a fraction of the 
voting age population, log population density, the fraction of the 
population that is White, and the Herfindahl-Hirschman index of 
race as a measure of racial heterogeneity (35). The GAM regresses 
the difference in precinct population between the DAS-12.2 and the 
Census data on the following function of these predictors

	​​ P​ DAS,i​​ − ​P​ Census,i​​  =  t(Democrati​c​ i​​, Turnou​t​ i​​,  log(Densit​y​ i​​ ) ) +  
	  s(Whit​e​ i​​ ) + s(HH​I​ i​​ ) + ​​ i​​​	

where i indexes precincts or VTDs, PD,i denotes i’s population as re-
ported by data source D, and HHI denotes the Herfindahl-Hirschman 
index, which is a measure of diversity ranging from 0 (most diverse) 
to 1 (least diverse). The function t indicates the smoothed tensor 
product cubic regression, while the function s denotes thin-plate 
regression splines. Last, i represents the error term. The model ex-
plains about 9 to 12% of the overall variance in population change.

Figure 1 plots the fitted values from this model using deviations 
of the DAS-12.2 data against the minority fraction of the population 
in each precinct for eight states. We chose to study a variety of states 
including those frequently studied in redistricting (Pennsylvania and 
North Carolina), the Deep South (South Carolina, Louisiana, and 
Alabama), small states (Delaware), and heavily Republican (Utah) 
or Democratic (Washington) western states. Consistent patterns 
emerge across these diverse states. As indicated by U-shaped patterns, 
mixed White/non-White precincts lose the most population relative 
to more homogeneous precincts. Figure 2 more clearly shows this 
pattern with racially homogeneous precincts (see fig. S3.3 for the results 
based on DAS-4.5). We plot the error against the Herfindahl-
Hirschman index and find that the fitted error in estimated popula-
tion steeply declines as the precinct becomes more racially diverse.

These patterns can be partially explained by the adopted DAS 
targets, which prioritize accuracy for the largest racial group in a 

Table 1. States and districts studied. We compared the Census 2010, 
DAS-12.2, and DAS-4.5 datasets in seven states and three levels of 
elections. Simulations indicate the number of simulations for each of 
those three different comparison datasets. States that we only use for 
precinct-level modeling and not for redistricting simulations are denoted 
by a dashed entry. 

State Office Districts Precincts Simulations

Alabama – – 1992 –

Delaware State Senate 21 434 10,000

Louisiana State Senate 39 3668 35,000

Louisiana* State House 15 361 90,000

Mississippi State Senate 52 1969 50,000

New York† School Board 9 1207 10,000

North Carolina U.S. House 13 2692 200,000

Pennsylvania U.S. House 18 9256 10,000

South Carolina U.S. House 7 2122 200,000

South Carolina State House 124 2122 100,000

Utah – – 2337 –

Washington – – 7312 –

*Examines the Baton Rouge area.     †Examines the East Ramapo school 
district, using Census blocks instead of voting precincts.
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given area (36). By doing so, the DAS procedure appears to under-
count heterogeneous areas where the population is most racially 
diverse. In highly heterogeneous precincts, the largest racial group 
is smaller, so the magnitude of the accuracy guarantees is much 
smaller. As precincts are the building blocks of political districts, 
our results demonstrate that precincts that are heterogeneous along 
racial and partisan lines would see their electoral power diluted under 
the DAS. In aggregate, the reallocation of population from hetero-
geneous to homogeneous precincts would tend to increase the 
apparent spatial segregation by race.

We find a similar pattern of undercounting bias along a partisan 
dimension, which is detailed in section S3. The Census Bureau does 
not tabulate partisan data, so this must be a result of the relationship 
between party and race. To compute election results, we use precinct-
level data from statewide elections (to avoid uncontested races and 
differences idiosyncratic to candidates) sourced from the Voting and 
Election Science Team (37). In Pennsylvania, we use the two-party 
vote share averaged across all statewide and presidential races, 
2004–2008, and adjust to match 2008 turnout levels. In North Carolina, 
we use the 2012 gubernatorial election at the precinct level. In 

South Carolina, we use the 2018 gubernatorial election, while in 
Louisiana, we use the 2019 Secretary of State election, each estimated 
at the voting tabulation district level, allocated on the basis of the 
2010 Census block voting age population. Last, in Delaware, we use 
the precinct-level returns from the 2020 presidential election.

Moderately Democratic precincts are, on average, assigned less 
population under the DAS than the actual 2010 Census. Furthermore, 
higher-turnout precincts are, on average, assigned more population 
under the DAS than they should otherwise have. These effects are 
on the order of 5 to 15 voters per precinct, on average, although 
some are larger. The corresponding effects for the DAS-4.5 data dis-
play an identical pattern but with roughly double the magnitude of 
fitted error (fig. S3.4).

Aggregated across the hundreds of precincts that comprise the 
average district, the DAS-12.2 errors may become substantial, as we 
discuss in more detail in the sections below. In the 70 congressional 
districts in the states that we examine statewide, the average district’s 
population changes by 308 people when measured with DAS-12.2 
counts. However, in two Pennsylvania congressional districts in 
the Philadelphia area, the population changes by 2151 people on 
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Fig. 1. Model-smoothed error in precinct populations by the minority fraction of voters, with color indicating turnout. A GAM-smoothed curve is overlaid to show 
the mean error by minority share.
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average. This measured difference under the DAS is orders of mag-
nitude larger than the difference under block population numbers 
released in 2010.

It is difficult to know exactly how these partisan and racial biases 
arise without knowing more detail about the DAS postprocessing 
system and parameters. Regardless, the presence of differential bias 
in the precinct populations according to partisanship, turnout, and 
racial diversity can have important implications.

Simulation analysis
Simulating realistic districts allows us to understand how the DAS 
would affect a variety of potential redistricting plans beyond the en-
acted 2010 districts. These analyses are particularly relevant because 
map drawers will soon be using DAS-processed data to create new 
districts for the 2020 cycle. The DAS-12.2 data yield precinct popu-
lation counts that are roughly 1.0% different from the original Census, 
and the DAS-4.5 data are about 1.9% different. For the average pre-
cinct, this amounts to a discrepancy of 18 people (for DAS-12.2) or 
33 people (for DAS-4.5) moving across precinct boundaries. There-
fore, our main simulation results should be considered as a study of 

how such precinct-level differences propagate at the district level by 
exploring many realistic redistricting plans.

Of the 10 states in Table 1, we further analyze 7 for simulation. 
In our modal analysis, we simulate district plans under the scenario 
that map drawers only have access to one of the three versions of 
population counts (the original 2010 Census, the DAS-12.2, or the 
DAS-4.5). Congressional district simulations were conducted with 
the sequential Monte Carlo (SMC) redistricting sampler of (23), 
while most of the state legislative district simulations use a merge-
split Markov chain Monte Carlo (MCMC) sampler building from 
(19, 20). Both of these sampling algorithms are implemented in the 
open-source software package “redist” (24). The package allows 
simulating districts while imposing a population parity constraint 
so that all simulated maps are realistic (for more detail, see Materi-
als and Methods).

Mirroring enacted maps, congressional district maps were sam-
pled so that population deviations were at most 0.1 to 1%, and state 
legislative district population deviations were at most 5 to 10%, de-
pending on the state. We generated Monte Carlo samples until the 
standard diagnostics including the number of effective samples 
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Fig. 2. Model-smoothed error in precinct populations by the Herfindahl-Hirschman index. A Herfindahl-Hirschman index of 100% indicates that the precinct is 
composed of only one racial group.
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indicated accurate sampling and adequate sample diversity. In the 
state legislative district simulations in South Carolina with more 
than 100 districts and Mississippi with 52 districts, ensuring sam-
pling diversity required running several chains of the merge-split 
algorithm in parallel, initiated from a sample generated from (23).
Impacts on population parity
Perhaps the strongest constraint on modern redistricting is the re-
quirement that districts be nearly equal in population. Deviations in 
population between districts have the effect of diluting the power of 
voters in larger-population districts. The importance of this principle 
stems from a series of Supreme Court cases in the 1960s, beginning 
with Gray v. Sanders (1963), in which the court held that political 
equality comes via a standard known as One Person, One Vote. As 
for acceptable deviations from population equality, Wesberry v. 
Sanders (1964) set the basic terms by holding that the Constitution 
requires that “as nearly as is practicable one [person’s] vote in a 
congressional election is to be worth as much as another’s.” Even 
minute differences in population parity across congressional districts 
must be justified, including those smaller than the expected error in 
decennial census figures (Karcher v. Daggett 1983).

For congressional districts, the majority of states thus balance 
population to within one person of perfect population parity (38). 
For state legislative districts, Reynolds v. Sims (1964) held that they 
must be drawn to near population equality. However, subsequent 
rulings stated that states may allow for small population deviations 
when seeking other legitimate interests (Mahan v. Howell 1972; 
Gaffney v. Cummings 1973). It remains to be seen whether the 
Supreme Court will see deviations due to Census privacy protection 
as legitimate.

When measuring population equality, states must rely on Census 
data, which was viewed as the most reliable source of population 
figures (Kirkpatrick v. Preisler 1969). We therefore empirically 
examine how the DAS affects the ability to draw redistricting maps 
that adhere to this equal population principle. We simulate maps 
for Pennsylvania congressional districts and Louisiana State Senate 
districts constrained at various levels of population parity, where 
populations are defined by one of the three data sources. We then 
examine the degree to which the resulting maps satisfy the same 
population parity criteria using another data source.

Deviation from population parity across nd districts is generally 
defined as

	​ Deviation from parity  = ​  max​ 
1≤k≤​n​ d​​

​​ ​ ∣ ​P​ k​​ − ​ 
_

 P ​ ∣  ─ ​ 
_

 P ​  ​​	

where Pk denotes the population of district k and ​​ 
_

 P ​​ denotes the target 
district population. In other words, we track the percent difference 
in the district population Pk from the average district size ​​ 

_
 P ​​ and re-

port the maximum deviation. Our redistricting simulations generate 
plans that do not exceed a user-specified deviation. After generating 
these plans, we then reevaluate the deviation from parity using the 
precinct populations from the three data sources.

We find that the noise introduced by the DAS prevents the 
drawing of equal-population maps with commonly used population 
deviation thresholds. Because only one dataset will be available in 
practice, redistricting practitioners who attempt to create equal-
population districts with DAS data should expect the actual deviation 
from parity to be orders of magnitude larger than what they can ob-
serve in the data. Because of the asymmetric postprocessing within the 

DAS algorithm, there is no clear way to improve estimates or to be 
confident in the magnitude of the error for any particular case. Below, 
we conduct simulations on congressional and state legislative dis-
tricts. We find that this problem is more acute in state legislative dis-
tricts, where there are more districts and each district is composed of 
fewer precincts. This is likely a consequence of the DAS procedure, 
for which noise is relatively larger at smaller scales.

Congressional districts in Pennsylvania. First, we analyze how the 
parity of the 2010 enacted Pennsylvania congressional districts varies 
when measured with each dataset. Congressional districts are gen-
erally drawn as to be nearly equal as possible. The enacted Pennsylvania 
congressional map has a maximum population difference between 
districts of 283 people (or 0.04%). When measured under the DAS, 
however, these differences are considerably larger, at 3893 people 
for DAS-4.5 (0.57%) and 2287 for DAS-12.2 (0.32%).

Investigating a singular enacted plan only allows us to measure 
how DAS influences parity in one particular instance. However, sim-
ulations allow us to generate many potential maps and investigate 
how likely parity errors would be under various intended tolerances. 
Figure 3 shows the maximum deviation from population parity for 
the 30,000 simulated redistricting plans in Pennsylvania, when evaluated 
according to the three different data sources. We simulated 10,000 plans 
from each data source, with every plan satisfying a 0.1% population 
parity constraint. The simulation algorithm also ensured that no more 
than 17 counties were split across the entire state, reflecting the 
requirement in Pennsylvania that district boundaries align with the 
boundaries of political subdivisions to the greatest extent possible.

Consistently, plans that were generated under one set of popula-
tion data and drawn to have a maximum deviation of no more than 
0.1% had much larger deviations when measured under a different 
set of population data. For example, of the 10,000 maps simulated 
using the DAS-12.2 data (the middle panel of the figure), 9915 ex-
ceeded the maximum population deviation threshold, according to 
the 2010 Census data. While nearly every plan failed to meet the 
population deviation threshold, the exact amount of error varied great-
ly across the simulation set. As a result, redistricting practitioners 
who attempt to create equal-population districts according to simi-
lar thresholds can expect the actual deviation from parity to be larger 
than reported but of unknown magnitude.

State legislative districts in Louisiana. We expect smaller districts 
such as state legislative districts to be more prone to discrepancies 
in population parity. For example, the average Louisiana congres-
sional district comprises about 600 precincts, but a State Senate district 
comprises about 90 and a State House district comprises only 35. 
Therefore, deviations due to DAS are more likely to result in larger 
percent deviations from the average.

First, we calculate how the DAS influences the parity of the 
enacted map. Louisiana’s state constitution places no legal parity 
requirements beyond that districts be created “as equally as practi-
cable on the basis of population shown by the census.” However, 
their adopted guidelines for the 2010 redistricting cycle set 5% as a 
target for all maps drawn for the State House (39). The State Senate 
map, with a parity of 4.97%, appears to have been drawn to target 
this goal as well. However, we find that both enacted plans under 
the DAS have population parities of above 5%, rendering the enacted 
plan invalid under the state’s own guidelines.

Second, we use simulations to examine whether this pattern is 
also found in other realistic maps. We compare 30,000 Louisiana 
State Senate plans generated from each of the three data sources 
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(90,000 in total) and population parity constraints ranging from 0.1 
to 30%, measuring the plans’ population deviation against the three 
different data sources. We simulated 5000 plans for each data source/
population parity pair. Figure 4 plots the results of this comparison.

As expected, we see complete acceptance for plans measured with 
the dataset from which they were generated. However, plans gener-
ated under one dataset can exceed the population threshold under 
another. Specifically, plans generated under DAS data can be highly 
likely to be invalid when evaluated using the true Census data. The 
rate of invalid plans grows as the tolerance becomes more precise.

Also note that even at tolerances as generous as 1 or 5%, plans 
generated from both versions of DAS data can regularly be invalid. 
Compared to Pennsylvania congressional districts, with a parity tol-
erance of 0.1%, simulated districts for the Louisiana State Senate fail 
to meet the cutoffs much more often, as the DAS-added noise is 
relatively larger at smaller scales. This suggests that map drawers using 
the DAS-adjusted demonstration data should anticipate actual pop-
ulation differences between districts to be larger than reported, although 
they will not be able to know the true magnitude of the errors.
Impacts on partisan composition
If changes in reported population in precincts affect the districts 
in which they are assigned to, then this has implications for which 
parties win those districts. While a change in population counts of 
about 1% may seem small, differences in vote counts of that magni-
tude can reverse some election outcomes. Across the five U.S. House 
election cycles between 2012 and 2020, 25 races were decided by a 
margin of less than a percentage point between the Republican and 
Democratic party’s vote shares, and 228 state legislative races were 
decided by less than a percentage point between 2012 and 2016.

Partisan implications also raise the concern of gerrymandering, 
where political parties draw district boundaries to systematically 
favor their own voters. Simulation methods have been regularly 
used in redistricting litigation over partisan gerrymanders, including 
Common Cause v. Lewis, Rucho v. Common Cause, Ohio A. Philip 
Randolph Institute v. Householder, League of Women Voters of 
Michigan v. Benson, and League of Women Voters v. Pennsylvania. 
To evaluate the impact of the DAS on the analysis of potential 
partisan gerrymanders, we used the simulations from four states 
(Table 1) and compared the partisan attributes of the simulated 
plans from the three data sources.

How does the systematic undercounting and overcounting of 
precinct-level populations in the DAS data affect the conclusions 

that we draw about the partisan and racial biases of legislative redis-
tricting plans? We first assess the impact of DAS data in identifying 
partisan packing and cracking, following a common approach in 
redistricting analysis. Practitioners and researchers compare enacted 
plans against a distribution of election results from each simulated 
plan, for example, adding up each precinct-level vote tabulation to 
each simulated district. Plans that are partisan gerrymanders stand 
out from the simulated ensemble as yielding more seats for one party 
over the other. The argument that ensemble analysis is sufficient for 
this purpose has been made in various academic contexts, including 
(40, 41), and litigation contexts, most recently (42, 43).

The results from nonsimulation analysis (figs. S1 and S2) suggest 
that the DAS-induced noise may not cancel out if diverse areas are 
spatially clustered. The systematic patterns at the district level clearly 
depend on the spatial adjacency of diverse and homogeneous pre-
cincts. Simulations can evaluate these implications beyond particular 
enacted plans.

We find that across tens of thousands of simulated plans, the DAS 
leads to unpredictable differences in the distribution state-level party 
outcomes under the three data sources. Figure 5 summarizes the 
differences in simulations with the aforementioned ensemble ap-
proach. To compare district-level partisan outcomes across simulations, 
we sort districts in ascending order of the Democratic candidate’s 
vote share in each simulation so that district number 1 in North 
Carolina is always the most Republican district in each simulated 
plan and district number 13 is the most Democratic district in the 
same plan. For each ordered district in each simulation, we subtract 
off the enacted plan’s Democratic vote share and plot the differences 
in a box plot (whiskers extend the entire range of simulated data). A 
box plot completely above zero indicates that the enacted plan had 
fewer Democratic voters in that district than would be expected 
under a partisan-neutral baseline, in other words, that the district 
cracked Democratic voters.

Figure 5 shows that while in some cases, such as the congressional 
districts in North and South Carolina, there are no discernible 
differences across the three data sources, for others, the differences 
can be substantial. For the South Carolina State House, a pattern of 
cracking in the 61st to 75th most Democratic districts under the 
Census 2010 data disappears under the DAS-protected data. More-
over, evidence of packing in the 111th to 115th most Democratic state 
legislative districts under the Census 2010 data is reversed under the 
DAS-4.5 data. In Pennsylvania, results are relatively stable across data 
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Fig. 3. Maximum deviation from population parity among Pennsylvania redistricting plans simulated from the three data sources. All plans were sampled with a 
population constraint of 0.1%, corresponding to the deviation measured from the Census 2010 precinct data and marked with the dashed line. Deviation from parity was 
then evaluated using the three versions of population data.
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sources for the relatively Republican districts 1 to 14 but display con-
siderable differences for the most Democratic districts (15 and 17), with 
median discrepancies moving as much as five percentage points.

Given that redistricting litigation often must focus on a single 
district or set of districts (44), discrepancies of this magnitude at the 
district level could change the conclusions regarding the presence 
or absence of a partisan gerrymander. The fact that the presence and 
magnitude of the discrepancies are not consistent even within the 
same state can complicate efforts to take into account these potential 
biases in research and decision-making.
Impacts on racial composition
The Voting Rights Act of 1965, its subsequent amendments, and a 
series of Supreme Court cases all center race as an important feature 
of redistricting. A large number of these cases focus on the creation 
of MMDs (e.g., Thornburg v. Gingles 1986, Shaw v. Reno 1993, 
Miller v. Johnson 1995, and Shelby County v. Holder 2013). First, 
we analyze whether the DAS data systematically undercount or 
overcount certain areas across racial lines. In doing so, we focus 
on the consequences of the Bureau’s decision to target accuracy 
to the majority racial group in a given area in their postprocessing 
procedure (36).

We also explore how DAS data can influence the creation of 
MMDs. To do so, we empirically examine how using the DAS data 
to create MMDs differs from the same process undertaken using the 
2010 Census data. We simulate maps in the Louisiana State House 
using various levels of a constraint targeted to create MMDs and 
examine the degree to which maps generated using the Census and 
DAS data lead to different results at the precinct level.

Figure 6 compares the simulations drawn from the three data 
sources in a way similar to Fig. 5 but by ordering the districts by 
their Black population share instead of Democratic vote share. As in 
Fig. 5, there are inconsistent patterns across states and district sizes. 
The racial makeup of congressional districts in North and South 
Carolina does not appear to be affected. For the South Carolina State 
House, patterns of cracking in the districts with the largest racial 
minorities (districts ordered 121 to 124) under the Census 2010 data 
disappear or are even reversed under the DAS-12.2 and DAS-4.5 data. 
In districts ranked to be the 96th to 110th most Black, patterns of 
packing are reversed in the DAS data. Similarly, in the Mississippi 
State Senate, evidence of cracking in the most Black districts (ordered 
49 to 52) becomes evidence of packing under the DAS-12.2 data. In 

Pennsylvania’s 18 congressional districts, patterns are generally stable 
across the data sources for the 14 most White congressional districts 
but display considerable differences for the heavily non-White districts 
ordered 16 and 17, with median discrepancies moving as much as 
seven percentage points.

These district-level findings may still mask the variability around 
which individual precincts are included in MMDs. To explore this, 
we run simulations using several levels of a Voting Rights Act con-
straint, which we did not apply in previous sections, to encourage 
the formation of MMDs at various strengths. We focus on Louisiana 
State House districts in the Baton Rouge area and run 10,000 simu-
lations of the merge-split MCMC sampler for each dataset-constraint 
pair. We then calculate the probability that each precinct is assigned 
to an MMD (as defined by Black population) by the proportion of 
Monte Carlo samples in which the precinct is assigned to an MMD.

The left and right columns of Fig. 7 show the difference between 
these probabilities for the Census versus DAS-12.2 and Census versus 
DAS-4.5. With no Voting Rights Act constraint (corresponding 
to the Voting Rights Act strength of zero on the y axis), each pre-
cinct has similar probabilities of being in an MMD, regardless of the 
dataset used. However, as the strength of this constraint increases 
(making the algorithm search for MMDs more aggressively), we see 
that the noise introduced to the DAS data systematically alters the 
district membership of individual precincts. Precincts with a value 
of 1 or −1 in Fig. 7 are never in an MMD under one data source but 
are always in an MMD when the same mapmaking process is un-
dertaken with a different data source.

This means that how the Census implements the DAS could in-
fluence the political representation of voters in particular precincts. 
The simulation methods used are probabilistic, and assignment dif-
ferences are expected and even desired between many created 
districts. However, these results illustrate a potential scenario in 
which real map drawers decide to add or remove precincts from a 
particular district to keep minority groups together because of pop-
ulation deviation introduced by DAS.
Impacts on ecological inference and voting rights analysis
Researchers have developed methods to predict the race and ethnicity 
of individual voters using Census data. Since Gingles, voting rights 
cases have required evidence that an individual’s race is highly 
correlated with candidate choice. Statistical methods must therefore 
estimate this individual quantity from aggregate election results 
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Fig. 4. Fraction of Louisiana State Senate plans simulated under one data source with a population parity constraint that is invalid when measured under 
another. The horizontal axis shows the tolerance constraint for the original simulation on the log10 scale. The vertical axis shows the percent of plans that exceed the 
intended tolerance according to the evaluation data. The dashed lines show the maximum deviation from parity of the enacted 2010 State Senate map as measured 
under each dataset. The enacted plan meets the 5% target when measured with the Census, but parity exceeds 5% in both DAS datasets.
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and aggregate demographic statistics (45–47). A key input to these 
methods is accurate racial information on voters. To produce these 
data, recent litigation has used BISG to impute race and ethnicity 
into a voter file (25–27). This methodology provides improved 
classification of the degree of racially polarized voting and racial 
segregation.

We first examine how the accuracy of prediction changes be-
tween the DAS and original Census data. While differential privacy 
should not prevent statistical prediction, race is the most sensitive 
information included in the P.L. 94-171 data release. Hence, it is of 
interest to examine whether the DAS will degrade the prediction 
accuracy of individual race and ethnicity. We follow up on this 

analysis by revisiting a recent Voting Rights Act Section 2 court 
case about the East Ramapo school board election and investigate 
whether this change in racial prediction alters the conclusions of the 
racial redistricting analysis.

Prediction of  individual voters’ race and ethnicity. We first 
compare the accuracy of predicting individual voters’ race and 
ethnicity using the original 2010 Census data, the DAS-12.2 data, 
and the DAS-4.5 data. To obtain the benchmark, we use the 
North Carolina voter file acquired in February 2021. All voter 
files used here were obtained through L2 Inc., a leading national 
nonpartisan firm that supplies voter data and related technology. 
In the United States, voter files are particularly widespread because 
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of the Help America Vote Act of 2002. In several southern states—
Alabama, Florida, Georgia, Louisiana, North Carolina, and South 
Carolina—the voter files contain the self-reported race of each 
registered voter. This information can then be used to assess the 
accuracy of the BISG prediction methodology (see Materials and 
Methods).

We compare estimates by changing the data source from which the 
geographic prior is estimated, from the 2010 Census to each of the two 
DAS datasets. Estimates of the other race prediction probabilities are ob-
tained by merging three sources: the 2010 Census surname list (48), the 
Spanish surname list from the Census, and the voter files from six states 
in the U.S. South, where state governments collect racial and ethnic data 

about registered voters for Voting Rights Act compliance. The middle 
and first name probabilities are derived exclusively from the voter files.

We evaluate the accuracy of the BISG methodology on approxi-
mately 5.8 million registered voters included in the North Carolina 
February 2021 voter file. Among them, approximately 70% are White 
and 22.5% are Black, with smaller contingents of Hispanic (3.4%), 
Asian (1.5%), and other (2.4%) voters.

Figure 8 summarizes the accuracy of the race prediction with the 
area under the receiver operating characteristic curve (AUROC), 
which ranges from 0 (perfect misclassification) to 1 (perfect classifi-
cation). Across all racial and ethnic groups except Hispanics, we 
find the same unexpected pattern. Relative to the 2010 Census data, 
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Fig. 6. The distribution of the simulated Black population share relative to the enacted redistricting plan in percentage points, comparing the original Census 
with DAS versions. Districts are numbered in ascending order of the Black or minority population share in each simulation. Districts are grouped for the South Carolina 
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the DAS-12.2 data yield a small improvement in prediction perfor-
mance, while the DAS-4.5 data give a slight degradation. Among 
Hispanics, both forms of DAS-protected data result in slightly im-
proved predictions over the original Census data.

The strong performance of the DAS data in this setting is counter-
intuitive. It is possible that the noise added to the underlying data 
has somehow mirrored the true patterns of population shift from 
2010 to 2021 or that this noise makes the DAS-12.2 data more re-
flective of the registered voter population relative to the total popu-
lation. In addition, the DAS may degrade or attenuate individual 
probabilities without having a meaningful impact on the overall ability 
to classify, something that AUROC is not designed to measure (49). 
Despite this, AUROC has been used to measure the disclosure risk 
from differentially private data in pharmacogenomic research (50).

Results are substantively similar if we consider the classification 
error, under the heuristic that we assign each individual to the racial 
and ethnic group with the highest posterior probability. Using the 
true Census data to establish geographic priors, we achieve posterior 
misclassification rates of 15.1, 12.1, and 10.0% when using the last 
name; last name and first name; and last, first, and middle names 
for prediction, respectively. The analogous misclassification rates are 
slightly higher for the DAS-4.5 priors—15.6, 12.5, and 10.3%—but the 
same or slightly lower for the DAS-12.2 priors: 15.1, 12.0, and 9.9%.

Our analysis shows that across three main racial and ethnic groups, 
the predictions based on the DAS data appear to be as accurate as 
those based on the 2010 Census data. The finding suggests that, 
although the new DAS methodology may protect differential privacy, 
it may not prevent accurate prediction of sensitive attributes any 
more than the swapping methodology used in the 2010 Census.

Implications for evidence in voting rights cases. How might these dif-
ferences in BISG result affect findings in voting rights cases? We reexam-
ine the remedy in NAACP of Spring Valley v. East Ramapo Central School 
District (2020) as a case study. The BISG methodology played a central 
role in this recent case regarding Section 2 of the Voting Rights Act. The 
East Ramapo Central School District (ERCSD) nine-member school board 
was elected using at-large elections. This often led to an all-White school 

board, despite 35% of the voter-eligible population being Black or His-
panic. However, within the district, nearly all White school children 
attend private yeshivas, whereas nearly all Black and Hispanic chil-
dren attend the ERCSD public schools. As a result of the court ruling 
for the plaintiffs, the district moved to a ward system. That is, the school 
district adopted a system with seven geography-based election districts.

We reexamine the remedy of this case by focusing on plans with 
MMDs. We estimate how many MMDs the move to a district system 
would create in this case, based on imputations of individual race 
and ethnicity using either the DAS-12.2 or the Census 2010 data. 
The move from at-large elections to district systems has been shown 
to improve representation for minority candidates in local elections 
with high residential segregation, like the ERCSD (51).

To approximate the data used by an expert witness who testi-
fied in the court case, we obtain the New York voter file (as of 
16 November 2020) from the state Board of Elections. We subset 
the voters to active voters with addresses in Rockland County where 
the ERCSD is located. Using the R package “censusxy,” which inter-
faces with the Census Bureau’s batch geocoder, we match each voter 
to a block and subset the voters to those who live within the geo-
graphic bounds of the ERCSD (52). This leaves 58,253 voters, for 
whom we impute races using the same machinery behind the 
R package “wru” (53), as described in (27). This process closely mim-
ics the one used in the original case.

We first examine how BISG results differ at smaller levels, before 
simulating how these differences manifest in the number of MMDs 
that can be drawn. Figure 9 compares these two predictions using 
the proportions of (predicted) White, Black, and Hispanic registered 
voters for each Census block. As in the case, we aggregate predicted 
probabilities for each individual’s race to the block level rather than 
classifying each individual by their most likely predicted race. We 
find that the predictions based on the DAS-12.2 tend to produce 
blocks with more White registered voters than those based on the 
original Census data. As a consequence, the predicted proportions 
of Black and Hispanic registrants are much smaller, especially in the 
blocks where they form a majority group.
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Fig. 7. The difference in calculated probabilities of being assigned to an MMD under the DAS compared to the original Census. VRA, Voting Rights Act. Strength 
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ow
nloaded from

 https://w
w

w
.science.org at H

arvard U
niversity on O

ctober 06, 2021



Kenny et al., Sci. Adv. 2021; 7 : eabk3283     6 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

12 of 17

The precise reason for these biases is unclear. The DAS tends to 
introduce more error for minority groups than for White voters and 
even more error for a racial group that is a minority in its Census 
block. This additional noise, when carried through a nonlinear 
transformation such as the Bayes’ rule calculation for racial imputa-
tion, may introduce some bias. In addition, the large bias for White 
and Black voters relative to Hispanic voters suggests that the simi-
larity of surnames between the White and Black populations, com-
pared to the Hispanic population, may also be a factor. Regardless, 
it is clear that the DAS-injected noise differentially biases voter race 
imputations at the block level. This pattern may not always yield 
greater inaccuracies when aggregated to the statewide level, as seen 
in the prior section, but it is especially prevalent within the ERCSD.

We further find that the systematic differences in racial predic-
tion at the block level result in the underestimation of the number 
of MMDs that can be drawn from the data. We simulate 10,000 re-
districting plans using DAS-12.2 population and a 5% population 
parity tolerance. As in the original court case, an MMD is defined as 
a district in which more than 50% of its registered voters are either 
Black or Hispanic. We find that the number of MMDs based on the 
DAS-12.2 data never exceeds that based on the 2010 Census for all 
simulated plans. Notably, among 6774 plans that are estimated to 
yield two MMDs according to the Census data, 56% of them are pre-
dicted to have only one MMD. For a complete accounting of simu-
lation evidence in this local case, see table S4.2.

While this single case of local redistricting does not represent the 
entire universe of local redistricting, our analysis suggests that in 
small electoral districts, such as those of school board elections, the 
DAS can generate bias that may favor one racial group over another. 
Local governments generally do not lie on-spine so they may be 
especially victim to the random seed used in privatizing the data. 

Although the number of MMDs is underestimated under the DAS 
data in this case, the direction and magnitude of racial effects are 
difficult to predict, as they depend on how the choice of tuning 
parameters in the DAS algorithm interact with a number of geo-
graphical and other factors.

DISCUSSION
Significance
Here, we study how the DAS and subsequent postprocessing steps 
could affect the process of redistricting. Our analysis shows that the 
added noise makes it impossible to follow the principle of One Person, 
One Vote, as it is currently interpreted by courts and policy-makers. 
The principle requires states to minimize population differences be-
tween districts as much as possible. Given the magnitude of popula-
tion errors introduced by the DAS, our analysis shows that current 
practices of redistricting will make it difficult and, in some cases, 
effectively impossible to meet these existing standards relative to the 
Census’ best estimates of total population. In the near future, courts 
may decide to treat this new type of error as is or loosen the bounds 
on these standards. Such a move will change the precedents and alter 
our understanding of redistricting in the United States. It may also 
affect the partisan balance of power.

The complex nature of the DAS postprocessing procedure masks 
the original source of these biases. Our findings suggest that they 
are likely a combination of several factors. First, the bias against 
heterogeneous areas could be driven by the Bureau’s decision to target 
accuracy to the population count of the majority racial group in a 
given area (36). Second, the choice to not prioritize accuracy at the 
block level leads to an additive effect in many cases. Our precinct-
level population tabulations reveal around a 1% average deviation 
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in the DAS-12.2 data compared to the 2010 Census data, and these 
errors do not always cancel out. Ensuring that population is accurate 
at this off-spine geography would help minimize population devia-
tions among the majority of states that rely on these geographies to 
draw and evaluate their districts.

One general strength of the differential privacy framework is that 
the noise generation mechanism is known. However, the asymmetric 
and deterministic nature of the postprocessing procedure of the 
DAS makes a proper statistical adjustment difficult for many com-
monly used models and nearly impossible for others. For this reason, 
many analysts are likely to treat the DAS-protected data as the basis 
for evaluating districts, as they have done with the past versions of 
the Bureau’s disclosure avoidance methods.

One possible approach is for the Bureau to additionally release 
the noisy DAS data without postprocessing so that analysts can use 
it for their statistical analysis. This will not solve the problems in 
map drawing but would allow researchers to properly calibrate 
uncertainty for at least some analyses when evaluating redistricting 
maps. However, new methodological developments are needed to 
properly incorporate the DAS noise generation mechanism into 
redistricting simulation analyses. In addition, it remains to be seen 
whether the addition of noise significantly reduces the statistical 
power to detect racial and partisan gerrymandering in litigation.

Implications
When considering the fundamental trade-off between privacy pro-
tection and data accuracy, it is critical to understand what individual 
data are at risk. The decennial census collects information on indi-
vidual age, sex, race, relationship to the head of household, and basic 
housing information but not other, more sensitive information, such 
as citizenship, income, and disability status. The basic demographic 
variables in the decennial census play an essential role in public policy, 
including redistricting, the subject of this article, and the disburse-
ment of federal and state funds. Individuals’ race and ethnicity are 
perhaps the most sensitive variable to be protected in the decennial 
census microdata.

The ability to reveal the race of 17% of respondents through a 
microdata reconstruction experiment (using a compendium of five 
commercial databases) provided key motivation for the Bureau’s 
decision to adopt differential privacy (54). Combining the Census 

data with a publicly available voter file, we find that the prediction 
of individual race is as accurate with the DAS data as with the original 
Census data. We expect these findings to be relevant even where 
public voter files are not available but where the commercial data-
bases as used in (54) still are.

Although accurate individual-level prediction does not necessarily 
constitute a violation of differential privacy, we believe that this find-
ing needs to be considered when weighing the benefits and costs of 
privacy protection in the decennial census. Our empirical findings 
on racial imputation accuracy point to the fact that differential privacy 
does not necessarily prevent accurate prediction of individuals’ sen-
sitive information better than the prior privacy protection method.

Based in part on an earlier version of this article, along with input 
from other researchers and practitioners, the Census Bureau has 
altered the DAS algorithm to address some of the aforementioned 
problems. According to the Census Bureau’s 9 June 2021 press re-
lease, the Bureau now plans to further increase the privacy loss budget 
and modify the postprocessing algorithm. In addition, its 1 July 2021 
newsletter states that this latest change has lowered the total error at 
areas above the optimized block group but has increased the amount 
of error introduced by the DAS at the block level. We plan to ana-
lyze new demonstration data based on this updated DAS algorithm 
once released.

It is important to point out that the Census Bureau claimed that 
the DAS-12.2 analyzed here met all internal accuracy targets “estab-
lished for redistricting, Voting Rights Act enforcement, and other 
priority uses of the redistricting data” (55). Nonetheless, we are still 
able to identify systematic biases across several states in that data on 
precisely the topic for which these accuracy guarantees were designed. 
If the same flaws are not resolved in the 2020 Census data, then they 
may have important ramifications for the upcoming redistricting 
cycle and for years to come.

Many national statistics agencies around the world face the difficult 
task of balancing the statutory requirements to protect respondent 
privacy with the accuracy of their reported count. Full enumeration 
censuses must pay special attention to disclosure risks due to the 
inclusion of data from every person that can be counted. At the 
same time, since censuses are used to allocate political power be-
tween geographic areas, it is equally important to ensure the accu-
racy and usability of the reported counts.
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The U.S. Census Bureau’s DAS clearly reflects this critical trade-
off. The DAS relies on differential privacy, adding random noise to 
the raw Census counts, while it also uses a complex postprocessing 
procedure to avoid negative counts and maintain consistency of 
published population counts across several levels of geographical 
units. This two-step algorithm creates counts that appear to be us-
able and are consistent within and across tables. This feature makes 
it likely that a similar algorithm will be used in other contexts. 
Our findings suggest, however, that the complex and nonlinear 
nature of the DAS can increase the chances of systematic errors 
and biases.

This article focused on the impacts of the DAS on redistricting 
analyses using the latest versions of the demonstration data released 
before the 2020 Census data are delivered. This offered a framework 
for evaluation that was completely within the stated use for the data. 
We considered a likely scenario, in which map drawers and analysts 
treat the noise-injected DAS data as is, without performing any 
additional accounting for the DAS noise. We find that the DAS has 
profound effects on standard redistricting analyses and procedures. 
Despite the efforts of the Bureau to minimize error, we find that the 
added noise artificially shifts population counts from racially 
heterogeneous and mixed-partisanship areas to more homogeneous 
areas. These nonrandom local errors can aggregate into substantively 
large and unpredictable biases at district levels, especially for 
small districts. Fixing these systematic biases is of fundamental im-
portance, as they will have partisan and racial impacts on the up-
coming redistricting.

Privacy protection in the decennial census is not free; it comes 
with the societal cost of decreasing accuracy, which has ripple effects 
in making and evaluating public policy. Therefore, we must ask what 
private information we wish to protect and what cost we are willing 
to pay for it. The burden of privacy should not be borne dispropor-
tionately by people of certain races or political preferences.

POSTSCRIPT
On 12 August 2021, about 6 weeks before the planned release, the 
Census Bureau released the finalized demonstration data for the 
2020 Census. The Bureau announced several important changes to 
the DAS. These changes were based on the comments and feedback 
submitted during a public comment period in May 2021, where the 
initial version of this article was also submitted. First, the Bureau 
announced a greater privacy loss budget (ϵ = 19.61) than for either 
of the previous releases (ϵ = 12.2 and 4.5). According to the Bureau’s 
presentation on 1 July 2021, they have resolved the problems due to 
“geographic bias” (“the accuracy of population counts being dif-
ferent at larger and smaller geographies”) and “characteristic bias” 
(“counts of racially or ethnically diverse geographies being different 
than more racially or ethnically homogeneous areas”). This consti-
tutes a 1000-fold increase (on the probability ratio scale) in the leni-
ency of the privacy guarantee since exp(19.61)/ exp(12.2) ≈ 1.6 × 
103. Second, the Bureau announced several changes to the postpro-
cessing algorithm with the goal of reducing biases of the type that 
we demonstrated in our article. Third, according to the Bureau, they 
modified the postprocessing algorithm to reduce the total error at 
high levels of geography above the block group. As a side effect, this 
will likely increase total error at the block level.

In this section, we repeat our analyses above using the DAS-19.61 
data. The Census Bureau reports that the DAS-19.61 corrects for 
racial and partisan biases at on-spine geographical units higher than 

the block group. Unfortunately, we still observe these biases at 
the VTD level because the Bureau did not attempt to minimize 
VTD-level errors as part of their postprocessing. This fact has 
important implications for redistricting simulation analyses, which 
are typically based on VTDs. We find that, although the differences 
in population counts between the DAS-19.61 and 2010 census data 
are an order of magnitude smaller than before at the congressional 
district level, strict population parities may still not be attainable in 
some cases. In addition, racial and partisan effects of the DAS-19.61 
data on simulation analyses remain qualitatively similar to those of 
the prior DAS releases. It appears that the evaluation of redistricting 
maps based on the DAS-19.61 can sometimes yield conclusions dif-
ferent from that based on the census data. Last, like before, the latest 
DAS does not degrade the overall prediction accuracy of individual 
voters’ race and ethnicity. However, these predictions are sufficiently 
different to possibly affect the conclusions of simulation analysis for 
the voting rights of minority groups.

In summary, the latest release of DAS-protected data improves 
over previous releases in many ways but fails to address all of the 
problems identified here, particularly those affecting the drawing 
and simulation of districting plans. Biases remain at the VTD level 
even after increasing the total privacy loss budget. These biases 
would likely not be resolved by any increase in the privacy loss 
budget. Instead, these biases likely come from the decision to main-
tain accuracy at geographies other than VTDs and voting precincts, 
such as census tracts. The imperfect overlap between these bound-
aries, combined with the increase in errors at small geographic levels 
such as census blocks, could still affect redistricting analyses. At the 
same time, using the latest DAS-protected data, we are still able to 
accurately predict individual’s race, which is the most sensitive infor-
mation of the decennial census.
Racial and partisan biases
Figures S4.1, S4.2, and S4.3 replicate Figs. 1 and 2 and fig. S3.1 on the 
DAS-19.61 data. For VTDs, we observe the same pattern of bias as before, 
albeit around half the magnitude, and despite the Bureau’s assurances that 
racial biases had been corrected by changes to the postprocessing system.

However, it does appear to be the case that the Bureau has largely 
eliminated these errors for on-spine geographies. Consequently, for 
larger geographical areas such as congressional districts, which can 
be decomposed as a large number of tracts plus several additional 
block groups or blocks, the racial biases only manifest in the latter 
additions and are relatively small in magnitude. In contrast, the pre-
vious DAS-12.2 contained racial biases for on-spine geographies as 
well, which were magnified by aggregation and did not disappear, 
leading to large population shifts in current congressional districts. 
Table S4.3 shows that deviations from 2010 Census totals among all 
the enacted congressional districts in the states that we studied 
ranged from −2153 to 2164 under the DAS-12.2 data, but under the 
DAS-19.61 data, the range of deviations is only −216 to 319. This con-
stitutes a nearly 10-fold improvement.
Simulation analysis

Population parity in redistricting. By increasing the privacy loss 
budget to 19.61, we expect total population errors at large geo-
graphic levels such as complete districts to be smaller than in pre-
vious releases. The population of congressional districts (as of 
2019) according to the DAS-19.61 differs from the actual Census 
counts by an order of magnitude smaller than that according to 
the DAS-12.2 (table S4.3). However, leaving VTDs “off-spine” 
means that discrepancies could still be present.
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We repeat the parity analysis with the new DAS-19.61 data. As 
before, we generated 35,000 Louisiana State Senate maps (5000 for 
each of seven tolerances) under each dataset (for 70,000 total) and 
measured the fraction of plans that would be rendered invalid. 
Figure S4.4 shows the results from this analysis. Unlike the previous 
releases of DAS-4.5 and DAS-12.2, the enacted map would still be 
valid at an intended population tolerance of 5% under DAS-19.61. 
These errors are lower than those found in Fig. 4 for DAS-12.2 and 
DAS-4.5, rendering the majority of plans at generous tolerances such 
as 5% valid in both cases.

However, plans generated with strict parity goals can still be found 
invalid at high rates. This means that plans created with a particular 
parity goal in mind may, in reality, exceed that goal in some cases, 
with the likelihood of such a mistake happening increasing as the 
parity tolerance is lowered.

Partisan effects on redistricting. Our reanalysis of racial and par-
tisan biases found that biases persist at the VTD level but generally 
disappear when VTDs are aggregated to larger, fixed, geographic 
areas. Here, we reanalyze the effect of these smaller-scale VTD 
biases on simulation analyses of partisan and racial gerrymandering. 
Do the small-scale errors continue to cause spurious shifts and in-
correct conclusions from redistricting simulations, as in Fig. 5? Or 
does the large size of the simulated legislative districts compared to 
individual VTDs protect against bias?

Unfortunately, as fig. S4.5 shows, DAS-19.61 data display quali-
tatively similar patterns to the DAS-12.2 and DAS-4.5 data. While, 
for many simulated districts, there is close agreement between the 
results for Census 2010 and DAS-protected data, for some districts 
(see Pennsylvania, ordered district 15, and South Carolina State 
House, ordered districts 111 to 115 and 121 to 124), the DAS-based 
simulations differ by several percentage points, which can shift the 
direction of a plan’s measured partisan bias.

Racial effects on redistricting. The results for racial gerrymander-
ing are similarly troubling. Figure S4.6 shows DAS-19.61 results 
following the layout of its counterpart in Fig. 6. The same areas for 
which the DAS-12.2 and DAS-4.5 simulations diverged from the 
2010 Census ground truth prove problematic for the DAS-19.61 as 
well (South Carolina State House, ordered districts 96 to 110 and 
121 to 124; Mississippi State Senate, ordered districts 49 to 52; and 
Pennsylvania, ordered district 16).

How should we reconcile these findings with the fact that biases 
in the overall population totals at the legislative district level appear to 
have been rectified by DAS-19.61? We suspect that the simulation 
process, which constantly makes calculations from and reassigns 
districts for individual VTDs, is driven more by local considerations 
than fixed tabulations are. Analogous to population parity simula-
tions, the aggregated calculations performed by the simulation algo-
rithms and resulting analyses depend on the noisy data themselves; 
this is crucially different from tabulations of existing geographic 
areas that have been defined without reference to it.

We next examine how the DAS-19.61 affects which VTDs belong 
to an MMD. We again simulate 50,000 maps using each dataset at a wide 
variety of constraint strengths that target the creation of MMDs. The 
results are shown in fig. S4.7, and they are substantively similar to the 
results based on the prior demonstration data presented in Fig. 7. Spe-
cifically, we find that some precincts are always contained in an MMD 
when maps are drawn using the original Census but never under DAS 
(or vice versa). As before, the magnitude of these differences is gen-
erally larger for higher values of the constraint than for lower values.

Ecological inference and voting rights analysis
Prediction of individual voters’ race and ethnicity. We examine 

whether the DAS-19.61 affects the prediction of individual voters’ 
race and ethnicity. Figure S4.8 presents the AUROC results for 
different racial groups using this final demonstration dataset. We 
compare the results against those in Fig. 8. We find that, by and large, 
our conclusions are unchanged. The DAS-19.61 data allow for the 
prediction of individual voters’ race and ethnicity with almost iden-
tical levels of accuracy to the 2010 Census data. The empirical per-
formance of the BISG methodology based on the DAS-19.61 has a 
similar pattern: It typically performs about the same for White and 
Black voters, slightly better for Hispanic voters, and slightly worse 
for Asian and other voters. Although the unexpected finding of the DAS-
12.2 analysis, superior predictive performance using the privacy-
protected data, is no longer present here, there is also no significant 
degradation in prediction quality relative to the 2010 Census data.

Table S4.1 reports misclassification rates of the BISG methodology 
based on the DAS-19.61 data where we assign each individual to the 
single ethnic group with the highest posterior probability. We can 
compare these against the analogous results for the 2010 census, 
DAS-12.2, and DAS-4.5 data given in tables S1.1, S1.2, and S1.3. The 
conclusions are largely similar using these metrics too: Classification 
error for individual voters’ race and ethnicity is at the same level 
using the DAS-19.61 data, as it is using the 2010 Census data.

Ecological inference in the voting rights analysis. We repeat our 
analysis of the ERCSD to examine the effect of the final DAS-19.61 
on local redistricting. Using the same geocoded voter file, we 
impute race onto the voter file using the BISG with the geographic 
priors from the DAS-19.61 data. Figure S4.9 displays the imputed 
races, aggregated to the block level, which is the basic geographic 
unit for building districts in this case. Consistent with the DAS-12.2 
data, the DAS-19.61 data tend to result in overestimates of White vot-
ers and thus underestimates of Black and Hispanic voters.

We find that similar to the previous demonstration data, the 
block-level undercounts of minority voters do not disappear at the 
school board ward level in this case. Under DAS-19.61, we find under-
estimation of majority-minority wards in line with findings under 
DAS-12.2. As shown in table S4.2, among sampled districts, MMDs 
are always underestimated in this local case.

MATERIALS AND METHODS
Redistricting simulation methodology
The goal of redistricting simulation methods is to generate a collec-
tion of redistricting plans that are representative of the set of all plans 
that satisfy applicable redistricting criteria. These criteria may be set 
out explicitly in state law or may be derived from traditional principles 
or court cases. The simulation methods applied here were designed 
to sample plans from a specific probability distribution that reflects 
the most common redistricting requirements: that each district (i) 
be geographically contiguous, (ii) have a population that deviates by 
no more than a specified amount from a target population that 
corresponds to population equality across districts, (iii) be compact 
(we use a graph-theoretic measure of compactness that counts how 
many internal edges must be removed to form the districts), and 
(iv) avoid splitting counties so as to follow political subdivision 
boundaries where possible.

Some simulations here also reflect a fifth constraint, which is that 
the districts satisfy the requirements of the federal Voting Rights Act. 
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This is accomplished by changing the sampling distribution to put 
more probability mass on plans that have a certain fraction of 
minority voters in a district. Formally, the target probability distri-
bution can be written as

	​ ( ) ∝ exp {− J( ) } ​()​​ ​ ​1​ { connected}​​ ​1​ {dev()≤D}​​​	 (1)

where  is a redistricting map, () measures the degree of compact-
ness (operationalized as the number of spanning forests on a parti-
tioned graph),  is a parameter chosen to control the level of 
compactness, dev() measures the percent deviation from popula-
tion parity as defined in the article, and J() is an additional constraint 
such as those related to the Voting Rights Act. This probability dis-
tribution is desirable because it represents the unique maximum 
entropy distribution on the set of redistricting maps that satisfy 
contiguity and population party requirements as well as moment 
conditions implied by compactness and additional constraints. The 
distribution is also able to accommodate a variety of constraints that 
are used in real-world redistricting processes.

We use two algorithms to sample from this target distribution: 
an SMC algorithm (23) and a merge-split–type MCMC algorithm 
that uses the same transition kernel (19, 20). Both of these sampling 
algorithms are implemented in the open-source software package 
“redist” (24). The SMC algorithm operates by drawing districts one at 
a time on a blank map. Each district is formed by drawing a random 
spanning tree and removing a certain edge from it, creating a “split” 
in the map that forms a new district. As redistricting plans are 
formed from these districts, they are periodically weighted and re-
shuffled so that the sampled plans approximate the target distribu-
tion. The MCMC algorithm also forms districts by drawing a random 
spanning tree and splitting it, but rather than drawing redistricting 
plans from scratch, it starts with an existing plan and modifies it, 
merging a random pair of districts and then splitting them a new 
way. Diagnostic measures exist for both these algorithms that 
allow users to identify issues in accurate sampling from the target 
probability distribution. The original papers for these algorithms 
provide more detail on the algorithm specifics, empirical valida-
tion of their performance, and the appropriateness of the chosen 
target distribution.

Prediction of individual race and ethnicity using names 
and residence location
Our approach follows that of (27). We denote by Ei the race and 
ethnicity of voter i, Ni as the name of voter i, and Gi as the geography 
in which voter i resides. For each choice of race and ethnicity e ∈ ℰ = 
{White, Black, Hispanic, Asian, Other}, Bayes’ rule implies

       ​Pr (​E​ i​​ =  e ∣ ​ N​ i​​  =  n, ​G​ i ​​ =  g ) = 

​ 
Pr (​N​ i​​ =  n ∣ ​ E​ i​​  =  e ) Pr (​E​ i​​ =  e  ∣ ​ G​ i​​  =  g)

    ─────────────────────────    
​∑ e′∈ℰ​ ​​ Pr (​N​ i​​ =  n  ∣ ​ E​ i​​ =  e′) Pr (​E​ i​​  =  e′∣ ​ G​ i​​  =  g)

 ​​

where we have assumed conditional independence between the sur-
name of a voter and their geolocation within each racial category, 
i.e., Ni ⫫ Gi∣Ei.

In the presence of multiple names, e.g., first name f, middle name 
m, and surname s, we make the further conditional independence 
assumption (56)

​​
Pr (​N​ i​​  =  {f, m, s}∣​E​ i​​  =  e)   

​   
= Pr (​F​ i​​  =  f∣​E​ i​​  =  e ) Pr (​M​ i​​  =  m∣​E​ i​​  =  e) Pr (​S​ i​​  =  s∣​E​ i​​  =  e)

​​

where Fi, Mi, and Si represent individual i’s first, middle, and 
surnames, respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abk3283

View/request a protocol for this paper from Bio-protocol.
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