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Summary. Experimentation is a powerful methodology that enables scientists to establish
causal claims empirically. However, one important criticism is that experiments merely pro-
vide a black box view of causality and fail to identify causal mechanisms. Specifically, critics
argue that, although experiments can identify average causal effects, they cannot explain the
process through which such effects come about. If true, this represents a serious limitation
of experimentation, especially for social and medical science research that strives to identify
causal mechanisms. We consider several experimental designs that help to identify average
natural indirect effects. Some of these designs require the perfect manipulation of an interme-
diate variable, whereas others can be used even when only imperfect manipulation is possible.
We use recent social science experiments to illustrate the key ideas that underlie each of the
designs proposed.
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1. Introduction

Over the last century and across numerous disciplines, experimentation has been a powerful
methodology to test scientific theories. As Neyman demonstrated in 1923 (see Neyman (1990)),
the key advantage of randomized experiments is their ability to estimate causal effects without
bias. However, one important criticism is that experiments merely provide a black box view of
causality. Many critics have argued that, whereas experiments can identify average causal effects,
they cannot explain causal mechanisms (e.g. Heckman and Smith (1995), Cook (2002) and
Deaton (2009)). If true, this represents a serious limitation of experimentation, especially for
social and medical science research which strives to identify how treatments work.

In this paper, we study how to design randomized experiments to identify causal mechanisms.
We use the term causal mechanism to mean a causal process through which the effect of a treat-
ment on an outcome comes about. This is motivated by the fact that many applied researchers,
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especially those in social sciences, use the term to refer to such a process. We formalize the
concept of causal mechanism by what is known in the methodological literature as a ‘natural
indirect effect’ or ‘causal mediation effect’, which quantifies the extent to which the treatment
affects the outcome through the mediator (e.g. Robins and Greenland (1992), Pearl (2001) and
Imai, Keele and Yamamoto (2010); see Section 2 for more discussion).

To identify causal mechanisms, the most common approach taken by applied researchers is
what we call the single-experiment design where causal mediation analysis is applied to a stan-
dard randomized experiment. This approach is popular in psychology and other disciplines (e.g.
Baron and Kenny (1986)). However, as formally shown by many researchers, it requires strong
and untestable assumptions that are similar to those made in observational studies. Thus, the
use of the single-experiment design is often difficult to justify from an experimentalist’s point
of view.

To overcome this problem, we propose alternative experimental designs. First, in Section 3,
we consider two designs that are useful in situations where researchers can directly manipulate
the intermediate variable that lies on the causal path from the treatment to the outcome. Such
a variable is often referred to as a ‘mediator’ and we follow this convention throughout this
paper. Under the parallel design, each subject is randomly assigned to one of two experiments;
in one experiment only the treatment variable is randomized whereas in the other both the treat-
ment and the mediator are randomized. Under the crossover design, each experimental unit is
sequentially assigned to two experiments where the first assignment is conducted randomly and
the subsequent assignment is determined without randomization on the basis of the treatment
and mediator values in the previous experiment. We show that the two designs have a potential
to improve the identification power of the single-experiment design significantly.

Despite their improved identification power, the parallel and crossover designs have disad-
vantages that are not shared by the single-experiment design. First, it is often difficult to manip-
ulate the mediator perfectly. For example, in psychological experiments, the typical mediators
of interest include emotion and cognition. Second, even if such a manipulation is possible, the
use of these designs requires the consistency assumption that the manipulation of the mediator
should not affect the outcome through any pathway other than the mediator. In medical and
social science experiments with human subjects, this often implies that experimental subjects
need to be kept unaware of the manipulation. This consistency assumption may be difficult to
satisfy especially if manipulating the mediator requires a strong intervention.

To address these limitations, in Section 4, we propose two new experimental designs that can
be used in the situations where the manipulation of the mediator is not perfect (see Mattei and
Mealli (2011) for a related experimental design). These designs permit the use of indirect and
subtle manipulation, thereby potentially enhancing the credibility of the required consistency
assumption. Under the parallel encouragement design, experimental subjects who are assigned
to the second experiment are randomly encouraged to take (rather than assigned to) certain
values of the mediator after the treatment has been randomized. Similarly, the crossover encour-
agement design employs randomized encouragement rather than the direct manipulation in the
second experiment. Therefore, these two designs generalize the parallel and crossover designs by
allowing for imperfect manipulation. We show that under these designs we can make informative
inferences about causal mechanisms by focusing on a subset of the population.

Throughout the paper, we use recent experimental studies from social sciences to highlight
key ideas behind each design. These examples are used to illustrate how applied researchers
may implement the proposed experimental designs in their own empirical work. In Section 5,
we use a numerical example based on actual experimental data to illustrate our analytical results.
Section 6 gives concluding remarks.
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2. The fundamental problem of identifying causal mechanisms

In this section, we argue that what many applied researchers mean by ‘causal mechanisms’ can
be formalized (and quantified) by using the concepts of direct and indirect effects (Robins and
Greenland, 1992; Pearl, 2001). We then briefly discuss the fundamental problem that arises when
identifying causal mechanisms. We also discuss an alternative definition of causal mechanisms
which focuses on causal components instead of processes (e.g. Rothman (1976) and Vander-
Weele and Robins (2009)), as well as other related quantities that have appeared in recent works
(Geneletti, 2007; Spencer et al., 2005).

2.1. Causal mechanisms as direct and indirect effects

In this paper, we use the term causal mechanisms to represent the process through which the
treatment causally affects the outcome. This viewpoint is widespread throughout social sciences
and also is consistent with a common usage of the term in a variety of scientific disciplines (e.g.
Salmon (1984) and Little (1990)). Specifically, we study the identification of a simple causal
mechanism, which is represented by the full arrows in the causal diagram of Fig. 1. In this
diagram, the causal effect of the treatment 7 on the outcome Y is transmitted through an inter-
mediate variable or a mediator M. The dotted arrow represents all the other possible causal
mechanisms of the treatment effect. Thus, the treatment effect is decomposed into the sum of
the indirect effect (a particular mechanism through the mediator of interest) and the direct effect
(which includes all other possible mechanisms). From this point of view, identifying the role of
the mediator corresponding to the causal pathway of interest allows researchers to learn about
the causal process through which a particular treatment affects an outcome.

To define indirect effects formally within the potential outcomes framework, consider a ran-
domized experiment where 7 units are randomized into the treatment group 7; = 1 or the control
group T; =0. Let M; € M denote the observed value of the mediator that is realized after the
exposure to the treatment where M is the support of M;. Since the mediator can be affected
by the treatment, there are two potential values, M;(1) and M;(0), of which only one will be
observed, i.e. M; = M;(T;). Next, let Y;(¢t,m) denote the potential outcome that would result if
the treatment variable and the mediator equal ¢ and m respectively. Again, we observe only
one of the potential outcomes, i.e. ¥; =Y;{T;, M;(T;)}. Throughout this paper, we assume no
interference between units, i.e. the potential outcomes of one unit do not depend on the values
of the treatment variable and the mediator of another unit (Cox, 1958). We also assume for sim-
plicity that the treatment variable is binary (i.e. 7; € {0, 1}) for the rest of the paper. Extension
to non-binary treatments is possible but beyond the scope of this paper.

= = ~

Mediator, M S

SN

Treatment, T wwsssssssssssssssssssnssassssssssssnssssnsnass » Outcome, Y

Fig. 1. Diagram for a simple causal mechanism: —>, causal mechanism of interest where the causal
effect of the treatment on the outcome is transmitted through the intermediate variable or the mediator; ----- - >,
all the other possible causal mechanisms; ----- », possible presence of confounders between the mediator
and outcome, which typically cannot be ruled out in the single-experiment design
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Given this set-up, the (total) causal effect of the treatment for each unit can be defined as
n=Y{1, M;(1)} - Yi{0, M;(0)}. )
Now, the unit indirect effect at the treatment level ¢ is defined as
50 =Yi{t, Mi(1)} = Yi{t, Mi(O) }, )

for t=0, 1 (Robins and Greenland, 1992; Pearl, 2001; Robins, 2003). The key to understanding
equation (2) is the following counterfactual question: what change would occur to the outcome
if we change the mediator from the value that would realize under the control condition, i.e.
M;(0), to the value that would be observed under the treatment condition, i.e. M;(1), while
holding the treatment status at #? Because these two values of the mediator are those that would
naturally occur as responses to changes in the treatment, the quantity in equation (2) formalizes
the notion of a causal mechanism that the causal effect of the treatment is transmitted through
changes in the mediator of interest.

Similarly, we define the unit direct effect, corresponding to all other possible causal mecha-
nisms, as

G =Y {l,M;(n}—-Yi{0,M;(1}, 3)

for t =0, 1. The key counterfactual question is: what difference in the outcome would result if
we change the treatment status from 7; =0 to 7; = 1 while holding the mediator value constant
at M;(¢)? In some cases (see Section 3.2), the direct effect rather than the indirect effect is of
interest to scientists.

According to Rubin (1974) and Holland (1986), the fundamental problem of causal inference
under the potential outcomes framework is that given any unit we cannot observe the potential
outcomes under the treatment and control conditions at the same time. The problem of iden-
tifying causal mechanisms is more severe than that of identifying causal effects. In particular,
whereas Y;{t, M;(¢)} is observable for units with 7; =z, Y;{z, M;(1 — 1)} is never observed for
any unit regardless of its treatment status without additional assumptions. This implies that,
although it identifies the average treatment effect 7, the randomization of the treatment alone
can neither identify the average indirect effect §(¢) nor the average direct effect { (7). These average
effects are defined as 7 = E[Y; {1, M;(1)} — ¥;{0, M;(0) }], HOE E[Yi{s, M;(1)} — Y;{t, M;(0)}] and
COH=RY {1, M;(®)} —Y:i{0, M;()}], for t =0, I.

Altogether, the average indirect and direct effects sum up to the average total effect, i.e.
7=6(t) + C(1 — £). The direct and indirect effects under different treatment status, i.e. ¢ and
1 — ¢, need to be combined in order for their sum to equal the total effect. The equality simpli-
fies to 7 =6+ ¢ when 6 =6(1) = 6(0) and ¢ = (1) =((0). Clearly, these relationships also hold
among the unit level effects. The fact that we can decompose the average causal effect 7 into
the sum of average direct and indirect effects implies that the identification of the average direct
effect implies that of the average indirect effect (or vice versa) so long as the average causal effect
is also identified. Finally, in Appendix A.1, we briefly discuss a related quantity that appears in
the recent work of Geneletti (2007).

2.2. Alternative definitions of causal mechanisms

As depicted in Fig. 1, we use the term ‘causal mechanism’ to refer to a causal process through
which the treatment affects the outcome of interest. Clearly, this is not the only definition of
causal mechanisms (see Hedstrom and Ylikoski (2010) for various definitions of causal mech-
anisms, many of which are not mentioned here). For example, some researchers define a causal
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mechanism as a set of components which, if jointly present, always produce a particular out-
come. This perspective, which can be seen in early works on causality such as Mackie (1965)
and Rothman (1976), has recently been formalized under the sufficient cause framework (e.g.
Rothman and Greenland (2005) and VanderWeele and Robins (2007)). VanderWeele (2009)
formally studied the relationship of this alternative definition to the process-based definition of
the causal mechanism by using a diagrammatic approach.

Instead of attempting to identify a complete set of sufficient causes, applied researchers often
focus on the more tractable task of identifying causal interactions. The goal is to test whether or
not an outcome occurs only when a certain set of variables is present. To identify causal inter-
actions, the most common practice is to establish statistical interactions between two variables
of interest by including their interaction term in a regression model. VanderWeele and Robins
(2008) derived the conditions under which this procedure is justified.

Although justifiable for analysing causal components, such a procedure is generally not useful
for the study of causal processes. For example, whereas causal interactions between treatment
and mediator can be identified by randomizing both variables, such manipulation is not suffi-
cient for the identification of causal processes. To see this formally, note that the existence of a
causal interaction between the treatment and the mediator can be defined as

Y,‘(l,m)—Y,‘(l,m/);ﬁY,'(O,m)—Y,‘(O,m/), (4)

for some m #m’. This definition makes it clear that the causal interaction exists when the causal
effect of a direct manipulation of the mediator varies as a function of the treatment, but not
necessarily when the effect of the treatment is transmitted through the mediator. This implies
that the non-zero interaction effect per se does not imply the existence of a relevant causal pro-
cess. In fact, as shown in later sections, under some experimental designs we must assume the
absence of interactions to identify causal processes.

Finally, some advocate the alternative definitions of direct and indirect effects based on prin-
cipal stratification (Rubin, 2004) and develop new experimental designs to identify them (Mattei
and Mealli, 2011). In this framework, for those units whose mediating variable is not influenced
by the treatment at all, the entire treatment effect can be interpreted as the direct effect. How-
ever, for the other units, direct and indirect effects cannot be defined, which makes it difficult to
answer the main question of causal mediation analysis, i.e. whether or not the treatment affects
the outcome through the mediator of interest (see VanderWeele (2008) for further discussions).
Thus, in this paper, we focus on the direct and indirect effects as defined in Section 2.1.

2.3. Identification power of the single-experiment design

Given the set-up that was reviewed above, we study the single-experiment design, which is the
most common experimental design employed by applied researchers to identify causal mecha-
nisms. Under the single-experiment design, researchers conduct a single experiment where the
treatment is randomized. After the manipulation of the treatment, the values of the mediator
and then the outcome are observed for each unit.

2.3.1.  Set-up

The randomization of the treatment (possibly conditional on a vector of observed pretreatment
variables X; as in matched pair designs) implies that there is no observed or unobserved con-
founder of the causal relationship between the treatment and the mediator. Fig. 1 encodes this
assumption since no broken bidirectional arrow is depicted between 7" and M or T and Y.
Formally, this can be written as follows.
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Assumption I (randomization of treatment assignment).
{Yi(',m), Mi(t) : t,t €{0,1},me M} 1L T;| D; =0
where it is also assumed that 0 < Pr(7; =¢| D; =0) for all ¢.

Here, D; =0 represents that unit 7 belongs to the standard randomized experiment where the
treatment is randomized (but the mediator is not). We have introduced this additional notation
for later purposes.

2.3.2.  Identification

As mentioned in Section 2, the randomization of the treatment alone cannot identify causal
mechanisms. Thus, for the identification of direct and indirect effects, researchers must rely on
an additional assumption which cannot be justified solely by the experimental design. Imai,
Keele and Yamamoto (2010) showed that one possible such assumption is that the observed
mediator values are conditionally independent of potential outcomes given the actual treatment
status and observed pretreatment variables, as if those mediator values were randomly chosen.
This assumption can be written formally as follows.

Assumption 2 (sequential ignorability of the mediator). For7,# =0, 1, and all xe X,
Yi(t',m) L M; | T;=t, X;=x, D; =0,
where it is also assumed that 0 < p(M;=m | T; =t, X; =x, D; =0) for t=0, 1 and for all m € M.

Here, we explicitly include the vector of pretreatment confounders X; in the conditioning
set because the experimental design does not guarantee the conditional independence between
potential outcomes and the observed mediator given the treatment status alone. It can be shown
that, under this additional assumption, the average indirect effects are non-parametrically iden-
tified (see theorem 1 of Imai, Keele and Yamamoto (2010)). Under a linearity assumption, this
assumption also justifies the common method that was popularized by Baron and Kenny (1986)
(see Imai, Keele and Tingley (2010)). The discussion of other assumptions that are closely related
to assumption 2 (such as those of Pearl (2001), Robins (2003) and Petersen et al. (2006)) can be
found in the literature (e.g. Shpitser and VanderWeele (2011)).

In practice, however, many experimentalists find such an identification assumption difficult
to justify for the same reason that the unconfoundedness assumption about treatment assign-
ment in observational studies is considered problematic (e.g. Bullock et al. (2010)). For example,
assumption 2 is violated if there are unobserved confounders that affect both the mediator and
the outcome. Imai, Keele and Yamamoto (2010) also pointed out that, whereas observed pre-
treatment confounders of the relationship between the mediator and outcome can be controlled
for in straightforward ways, the mediator—outcome confounders that are post treatment cannot
be accommodated even when they are known and observed. These possibilities imply that mak-
ing assumption 2 often involves speculation about unobserved characteristics of units and thus
may not be desirable from the experimentalists’ point of view.

2.3.3.  Sharp bounds

How important is an additional assumption such as assumption 2 for the identification of causal
mechanisms under the single-experiment design? To answer this question, we derive the sharp
bounds on the average indirect effects under assumption 1 alone (see Sjolander (2009) and
Kaufman et al. (2009), for the sharp bounds on the average direct effects). These large sample
bounds represent the ranges within which the true values of the average indirect effects are
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guaranteed to be located (Manski, 1995). For illustration, we assume that both the outcome
and the mediator are binary. Then, it is straightforward to obtain the sharp bounds by using
the linear programming approach (Balke and Pearl, 1997).

The expressions for the bounds, which are given in Appendix A.2, imply that the bounds could
be shorter than the original bounds (before conducting an experiment, i.e. [—1, 1]), but unfor-
tunately they always contain 0 and thus are uninformative about the sign of the average indirect
effects. This implies that the single-experiment design can never provide sufficient information
for researchers to know the direction of the indirect effects without additional assumptions
which are not directly justifiable by the experimental design itself. Given the importance of such
untestable identification assumptions, some propose to conduct a sensitivity analysis to eval-
uate formally how robust one’s conclusions are in the presence of possible violations of a key
identifying assumption (see Imai, Keele and Tingley (2010) and Imai, Keele and Yamamoto
(2010)).

2.3.4. Example

Brader et al. (2008) examined how media framing affects citizens’ preferences about immigra-
tion policy by prompting emotional reactions. In the experiment, subjects first read a short news
story about immigration where both the ethnicity of an immigrant and the tone of the story
were randomly manipulated in the 2 x 2 factorial design. For the ethnicity manipulation, an
image of a Latino male and that of a Caucasian male were used. After reading the story, subjects
completed a standard battery of survey questions, which measured the mediating variables that
comprise a subject’s level of anxiety. Respondents were then asked whether immigration should
be decreased or increased, which served as the outcome variable of interest.

The primary hypothesis of the original study is that media framing may influence public opin-
ion by changing the level of anxiety. Specifically, subjects who are assigned to the Latino image
and the negative tone would be more likely to oppose immigration and this opposition would
be caused through an increasing level of anxiety. Brader et al. (2008) found that respondents in
the treatment condition (Latino image and negative tone) exhibited the highest levels of anxiety
and opposition to immigration. They applied a linear structural equation model to estimate the
average indirect effect of the negative Latino frame on policy preferences through changes in
anxiety.

Under this single-experiment design, only the treatment was randomized. This makes assump-
tion 2 unlikely to hold, compromising the credibility of causal mediation analysis. In many
psychological experiments including this one, researchers are interested in psychological mech-
anisms that explain behavioural or attitudinal responses to experimental manipulations. Thus,
the mediator of interest is typically a psychological factor that is difficult to manipulate. As a
consequence, the single-experiment design is frequently used and causal mediation analysis is
conducted under the strong assumption of sequential ignorability.

3. Experimental designs with direct manipulation

Many critics of the single-experiment design view the randomization of the mediator as the solu-
tion to the identification of causal mechanisms. For example, a popular strategy is the so-called
‘causal chain’ approach where researchers first establish the existence of the causal effect of the
treatment on the mediating variable in a standard randomized trial (e.g. Spencer et al. (2005)
and Ludwig et al. (2011)). Then, in a second (separate) experiment, the mediator is manipulated
and its effect on the outcome variable is estimated, which establishes the causal chain linking
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the treatment and outcome variables. Although intuitively appealing, this two-step procedure
generally fails to identify the causal process of how the treatment affects the outcome through
the mediator. For example, unless the causal effect of the treatment on the mediator and that of
the mediator on the outcome are homogeneous across units, we can easily construct a hypothet-
ical population for which the average indirect effect is negative even though both the average
causal effect of the treatment on the mediator and that of the mediator on the outcome are both
positive (e.g. Imai, Keele, Tingley and Yamamoto (2011)).

Manipulating the mediator thus does not provide a general solution to the problem of identi-
fying causal mechanisms. This, however, by no means implies that experimental manipulations
of the mediator are useless. Here, we consider two experimental designs that may be applicable
when the mediator can be directly manipulated.

3.1. Parallel design

We first consider the parallel design in which two randomized experiments are conducted in
parallel. Specifically, we randomly split the sample into two experiments. The first experiment
is identical to the experiment that was described in Section 2.3 where only the treatment is
randomized. In the second experiment, we simultaneously randomize the treatment and the
mediator, followed by the measurement of the outcome variable. In the causal inference lit-
erature, Pearl (2001), theorem 1, implicitly considered an identification strategy under such a
design. Our identification analysis differs from Pearl’s in that he considered identification under
a sequential ignorability assumption that was similar to assumption 2. We also derive the sharp
bounds on the average indirect effects in the absence of any assumption that is not justified by
the design itself.

3.1.1. Set-up

Suppose that we use D; =0 and D; =1 to indicate that unit i belongs to the first and second
experiment respectively. Then, the potential outcome can be written as a function of the exper-
imental design as well as the treatment and the mediator, i.e. Y;(¢,m, d). Because our interest
is in identifying a causal mechanism through which the effect of the treatment is naturally
transmitted to the outcome, researchers must assume that the manipulation of the mediator in
the second experiment itself has no direct effect on the outcome. Specifically, an experimental
subject is assumed to reveal the same value of the outcome variable if the treatment and the
mediator take a particular set of values, whether or not the value of the mediator is chosen by
the subject (D; =0) or assigned by the experimenter (D; =1).

Formally, this assumption can be stated as the following consistency assumption.

Assumption 3 (consistency under the parallel design). For all r=0,1 and m € M,
Yi{t, Mi(1),0} =Y;(t,m,1) if Mi(t)=m,

Under this assumption, we can write Y;(¢,m,d) simply as Y;(¢,m) for any ¢, m and d. The
importance of assumption 3 cannot be overstated. Without it, the second experiment provides
no information about causal mechanisms (although the average causal effect of manipulating
the mediator under each treatment status is identified). If this assumption cannot be maintained,
then it is difficult to learn about causal mechanisms by manipulating the mediator.

Since the treatment is randomized in the first experiment, assumption 1 is guaranteed to hold.
Similarly, in the second experiment, both the treatment and the mediator are randomized and
hence the following assumption holds under assumption 3.
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Assumption 4 (randomization of treatment and mediator). For t=0,1 and all m € M,

Yi(t,m) LA{T;, M;}| Di=1.

3.1.2. Identification

Unfortunately, assumptions 1, 3 and 4 alone cannot identify causal mechanisms under the par-
allel design. To see this formally, note that we can identify E[Y;{¢, M;(r)}] and E{M;(¢) } from the
first experiment and E{Y;(¢,m)} from the second experiment. In contrast, E[Y;{z, M;(¢")}] is not
identified as the following decomposition shows:

EY, {1, Mi())] = / E{Yit,m) | Mi() =m} d Fyg 1= pyo (), )

where F(-) represents the distribution function. The problem is that the first term in the inte-
gral, and therefore the left-hand side, cannot be identified unless Y;(¢,m) is independent of
M;(t") (Pearl (2001), theorem 1). Furthermore, if the range of the outcome variable is (—o0, 00),
then this design provides 7o information about the average causal mediation effect without an
additional assumption because the left-hand side of equation (5) can also be unbounded.

To achieve identification, we may rely on the assumption that there is no causal interaction
between the treatment and the mediator. Using the definition of interaction given in Section
2.2, the assumption can be formalized under assumption 3 as follows.

Assumption 5 (no interaction effect). For all m,m’ € M such that m #m’,
Yi(1,m) = Y;(1,m") =Y;(0,m) — Y;(0,m").

An equivalent assumption was first introduced by Holland (1988) as additivity and later
revisited by Robins (2003) for the identification of indirect effects. This assumption implies that
the indirect effect depends only on the value of the mediator, not the treatment. Note that this
assumption must hold for each unit, not just in expectation, a point to which we return shortly
below.

The following theorem shows that, if we are willing to assume no interaction effect, we can
identify causal mechanisms under the parallel design.

Theorem 1 (identification under the parallel design). Under assumptions 1, 3, 4 and 5, for
t=0, 1, the average indirect effects are identified and given by

5 =EY;|T;=1,D;=0) — E(Y; | T; =0, D; =0)

—/{[E(Yi|Ti=1,Mi=m,Di=1>—[E<Yi|Ti=o,M,-=m,Dl-=1)}dFMi|Di:1(m>.

Our proof, which closely follows that of Robins (2003), is given in Appendix A.3. Note that
the no-interaction assumption leads to 6(1) = 6(0), thereby giving only one expression for both
quantities. Theorem 1 implies that, in the situations where assumptions 1, 3, 4 and 5 are plau-
sible, researchers can consistently estimate the average indirect effect by combining the two
experiments.

The estimation can proceed in two steps. First, the first two terms of the expression in theorem
1 are the average treatment effect on the outcome and can be estimated by calculating the average
differences in the outcomes between the treatment and control groups in the first experiment.
Next, the remaining term is the average direct effect of the treatment on the outcome, which
is also the average controlled direct effect under assumption 5 (Robins, 2003). This can be
estimated by using the information from the second experiment, by computing the differences
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in the mean outcomes between the treatment and control groups for each value of the medi-
ator, and then averaging these values over the observed distribution of the mediator. Note
that theorem 1 holds regardless of whether the mediator and outcome are continuous or dis-
crete. Our other results also allow for any mediator and outcome variable type unless otherwise
stated.

It is important to emphasize that the formula given in theorem 1 generally cannot be used
unless the no-interaction assumption holds at the unit level (assumption 5). For illustration,
consider the following hypothetical population, which consists of two types of individuals with
equal proportions (i.e. 0.5): M;(1) =Y;(t,1)=Y;({,0)=p and M;(t)=Y;(,0)=Y;(¢/, 1)=1—p
where p takes the value of either 0 or 1. The no-interaction assumption is on average satis-
fied for this population because E{Y;(z,1) — Y;(z,0)} = E{Y;(¢, 1) — ¥;(¢,0)} = 0. Computing
the average indirect effect on the basis of theorem 1, however, will lead to a severely biased
estimate: the estimate converges to 6(f) =0 whereas the true value is 6(r) = 1. The bias arises
from the fact that assumption 5 itself is violated for any individual in this hypothetical pop-
ulation, i.e. the average indirect effect depends on the baseline value of the treatment since
Yi(t,1) = Y;(t,0) £ Y;(¢', 1) — Y;(¢', 0) for all i in this example.

Unfortunately, assumption 5 cannot be directly tested since for each unit we observe only
one of the four potential outcomes that consist of the assumed equality. However, researchers
can test an implication of this assumption by investigating whether the equality holds in expec-
tation, given the fact that E{¥;(z,m)} is identified in the second experiment. One way to make
assumption 5 credible is to collect pretreatment characteristics that are known to be related to
the magnitude of interaction effects and to implement the parallel design within each stratum
defined by these pretreatment variables. Alternatively, a sensitivity analysis such as that devel-
oped by Imai and Yamamoto (2012) can be used to examine the robustness of empirical findings
to the violation of this assumption.

3.1.3.  Sharp bounds

The importance of the no-interaction assumption can be understood by deriving the sharp
bounds on the average indirect effects without this additional assumption. We also compare the
resulting bounds with those obtained in Section 2.3 to examine the improved power of identifi-
cation of the parallel design over the single-experiment design. In Appendix A.4, we show the
formal expressions for the bounds under assumptions 1, 3 and 4 (but without assumption 5)
for the case in which both the mediator and the outcome are binary. As expected, these bounds
are at least as informative as the bounds under the single-experiment design because the first
experiment under the parallel design gives identical information to that of the single-experi-
ment design as a whole, and the second experiment provides additional information. Moreover,
the bounds imply that, unlike the single-experiment design, the parallel design can sometimes
identify the sign of the average indirect effects. However, there is a trade-off between the infor-
mativeness of the lower bound and that of the upper bound, in that the lower and upper bounds
tend to covary positively for both (1) and 6(0). This means that the width of the bounds tends
to be relatively wide even when the sign of the true value is identified from the data to be either
positive or negative.

3.1.4. Example

In behavioural neuroscience, scholars have used brain imaging technology, such as functional
magnetic resonance imaging, to measure the operation of neural mechanisms. Functional
magnetic resonance imaging measures local changes in blood flow to particular regions of the
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brain, which is a proxy for brain activity. Another technology, transcranial magnetic stimu-
lation (TMS), uses repeated magnetic pulses to localized portions of the brain to manipulate
activation of the region. This allows in principle for a direct manipulation of the hypothesized
neural mechanism linking a stimulus with a behavioural response. A growing number of studies
use TMS (e.g. Martin and Gotts (2005) and Paus (2005)) because it ‘directly leads to causal
inferences about brain functioning rather than the purely associational evidence provided by
imaging techniques’ (Camerer et al. (2005), pages 13-14).

For example, Knoch et al. (2006) used TMS to understand the neural mechanisms underlying
common behaviour that is observed in the strategic situation known as the ‘ultimatum game’. In
this game, a ‘proposer’ decides on the division of a resource worth R by offering p to a ‘receiver’
and keeping R — p for herself. The receiver can either accept the offer (he receives p) or reject the
offer (both parties receive 0). Standard economic models fail to predict the rejection of positive
offers in this game, but it frequently happens in laboratory experiments. One prominent expla-
nation is based on the concept of fairness; individuals tend to reject unfair offers even though
their acceptance will be profitable.

In a previous study, Sanfey et al. (2003) found evidence based on functional magnetic reson-
ance imaging that two regions of the brain are activated when subjects decide whether or not to
reject an unfair offer: the anterior insula and dorsolateral prefrontal cortex. Given this result,
Knoch ez al. (2006) used TMS to investigate whether the activity in the dorsolateral prefrontal
cortex controls an impulse to reject unfair offers or regulates a selfish impulse. It was argued
that, if the dorsolateral prefrontal cortex were to be deactivated and individuals accept more
unfair offers, then this would represent evidence that the dorsolateral prefrontal cortex serves
the role of implementing fair behaviour and regulating selfish impulses, instead of inhibiting
fairness impulses.

The parallel design may be applicable in this setting. Here, the treatment variable is whether
an individual receives a fair or unfair offer, and thus can be easily randomized. With the aid of
TMS, researchers can also directly manipulate the mediator by changing the activity level of
the dorsolateral prefrontal cortex. The outcome variable, whether or not the offer was rejected,
can then be measured. As discussed above, the key identification assumption is the consistency
assumption (assumption 3), which mandates in this context that subjects must not be aware of
the fact that they were being manipulated. In the original study, every subject wore the same
TMS apparatus, and none of them were aware of whether or not they were actually exposed to
the stimulation by the TMS, increasing the credibility of the consistency assumption. However,
such manipulation may be difficult in practice even with technologies such as TMS, because
anatomical localization for TMS device placement is known to be imperfect (Robertson et al.,
2003).

For the parallel design, the no-interaction effect assumption is required for the identification
of causal mechanisms. Is this assumption reasonable in the experiment of Knoch et al. (2006)?
Their results suggest not. They found that the effect of changing the mediator in the fair offers
condition is less than in the unfair offers condition. Although this result can be taken as evi-
dence that the fairness of offers and the activation of the dorsolateral prefrontal cortex causally
interact in determining subjects’ behaviour, this does not necessarily imply that the dorsolateral
prefrontal cortex represents a causal process through which the effect of the fairness treatment
is transmitted.

3.2. Crossover design
To improve further on the parallel design, we must directly address the fundamental problem
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of identifying causal mechanisms that was discussed in Section 2. For example, we can never
observe M;(1) for units with 7; =0, but we must identify E[Y;{0, M;(1)}] to identify 5(0). Here,
we consider the crossover design where each experimental unit is exposed to both treatment and
control conditions sequentially. This design differs from the standard crossover designs in an
important way (Jones and Kenward, 2003). Specifically, under this design, the experimenter
first randomizes the order in which each unit is assigned to the treatment and control condi-
tions. After measuring the value of the mediator and then that of the outcome variable, each
unit is assigned to the treatment status opposite to their original treatment condition and to
the value of the mediator that was observed in the first period. Optionally, the second stage of
this design can be modified to include a randomly selected subgroup for each treatment group
which does not receive the mediator manipulation (see below for the rationale behind this pos-
sible modification). Finally, the outcome variable is observed for each unit at the end of the
second period.

The intuition behind the crossover design is straightforward; if there is no carry-over effect
(as defined formally below), then the two observations for each unit can be used together to
identify the required counterfactual quantities. This design is different from that suggested by
Robins and Greenland (1992) where ‘both exposure and the cofactor intervention [i.e. mediator
manipulation] are randomly assigned in both time periods’ (page 153). They showed that under
this alternative design the average direct and indirect effects are separately identified when all
variables are binary. This result, however, rests on the additional strong assumption that the
causal effects of the treatment on both mediator and outcome as well as the causal effect of the
mediator on the outcome are all monotonic. This monotonicity assumption is not made in our
analysis below. A design that is identical to our crossover design was also mentioned by Pearl
(2001), page 1574, albeit only in passing.

3.2.1. Set-up

Let us denote the binary treatment variable in the first period by 7;. We write the potential medi-
ator and outcome variables in the first period by M;(f) and Y;1{¢’, M;(¢) } respectively. Then, the
average indirect effect is given by 6(¢) = E[Y; {t, Mi(1)} — Y;1{t, M;(0)}] for t =0, 1. During the
second period of the experiment, the treatment status for each unit equals 1 — 7;, and the value
of the mediator, to which unit i is assigned, equals the observed mediator value from the first
period, M;. Finally, the potential outcome in the second period can be written as Y; (¢, m) where
the observed outcome is given by Y;» = Y;»(1 — T;, M;). Since the treatment is randomized, the
following assumption is automatically satisfied under the crossover design.

Assumption 6 (randomization of treatment under the crossover design).
{Yi(t,m), Yo (t',m), My (£ : 1,1/ ,1" € {0,1},me M} L T;.

Like the parallel design, we make the consistency assumption, i.e. the manipulation of the
mediator in the second period does not directly affect the outcome, in the sense that the out-
come variable would take the value that would naturally occur if the unit chose that particular
value of the mediator without the manipulation. In addition to this consistency assumption,
we also assume the absence of a carry-over effect as is often done in the standard crossover
trials. Specifically, we assume that the treatment that is administered in the first period does not
affect the average outcome in the second period, as well as that there is no period effect (i.e. the
average potential outcomes remains the same in two periods). Formally, these key identifying
assumptions can be stated as follows.
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Assumption 7 (consistency and no carry-over effects under the crossover design).
E[Yi{r, Mi(D}]=E{Y2(t,m)} if Mi(t)=m,
forallt=0,1 and m € M.

This assumption allows us to write the expected values of potential outcomes in both periods
simply as E{Y;(z,m)} for any ¢ and m. Unlike the parallel design the consistency assumption
only needs to hold in expectation, slightly relaxing assumption 3. (If the assumption holds at
the individual level, we can identify individual level direct and indirect effects.) Together, these
assumptions allow researchers to observe two potential outcomes for each unit at different
treatment conditions sequentially while holding the value of the mediator constant.

Assumption 7 might be violated if, for example, the exposure to the first treatment condition
provides subjects with a reference point, which they then use in deciding how to respond to the
subsequent treatment condition in the second experiment. Like assumption 5, it is impossible
to test assumption 7 directly; however, the assumption can be partially tested if we modify the
second experiment to include an optional subgroup for each treatment group which does not
receive any mediator manipulation. This test can be done by comparing the average observed
outcome among each of these subgroups with the average outcome among the opposite treat-
ment group in the first experiment. If the difference between these values is insignificant for both
treatment conditions, the analyst can know that the no-carry-over effect (but not necessarily
the consistency) assumption is plausible.

3.2.2. Identification

Under the crossover design, experimenters attempt to measure potential outcomes under
different treatment and mediator values for each unit. This helps to address the fundamen-
tal problem of identifying causal mechanisms that was discussed in Section 2. The following
theorem summarizes the fact that under the crossover design the randomization of the treatment
and the assumption of consistency and no carry-over effects identify the average indirect effect.

Theorem 2 (identification under the crossover design). Under assumptions 6 and 7, the aver-
age indirect effect is identified and given by

S(H=EYy | Ti=1)—E(Yn|T;i=0),
50)=E(Yn|Ti=1)—EY; | T;=0).

A proof is straightforward, and therefore it is omitted.

3.2.3.  Sharp bounds

Under the crossover design, the assumption of consistency and no carry-over effects is crucial.
Without it, the sharp bounds on the average indirect effects would indeed be identical to those
under the single-experiment design given in equations (6) and (7) because the second experi-
ment provides no relevant information. This is similar to the standard crossover design where
the assumption of no carry-over effect plays an essential role although the difference is that
under the standard crossover design this assumption can be directly tested.

3.2.4. Example
In a landmark paper, Bertrand and Mullainathan (2004) conducted a randomized field exper-
iment to test labour market discrimination against African Americans. They created fictitious
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résumés, some with typical white names and others with African American sounding names,
thus only varying the perceived racial identity of applicants (the treatment 7; which is equal to 1
if applicant i is white and 0 if she is black) while potentially keeping their perceived qualifications
(the mediator M;) constant. These résumés are then randomly sent to potential employers and
callback rates for interviews are measured as the outcome variable of interest. Bertrand and
Mullainathan (2004) found that the résumés with white names are more likely to yield callbacks
than those with black names.

Under the original experimental design, the researchers could estimate the average causal
effect of manipulating applicants’ race on callback rates, i.e. the average controlled direct
effect 7(m) =E{Y;(1,m) — Y;(0,m)} where m represents the particular qualification specified in
résumés. An alternative causal quantity of interest is the average direct effect of applicants’ racial
identity among African Americans, which represents the average increase in the callback rate if
African American applicants were whites but their qualifications stayed at the actual value, i.e.
E[Y;{1, M;(0)} — Y;{0, M;(0)} | T; = 0] (see the discussion in Section 2.1). This quantity can thus
be interpreted as the portion of the effect of race that does not go through the causal mechanism
represented by perceived qualifications.

The identification of this quantity is useful to isolate the degree to which African American job
applicants are discriminated not on the basis of qualifications but on their race. If the quantity
is positive, then it may suggest racial discrimination in the labour market. The key difference
between the two quantities is that the former is conditional on a particular qualification m
assigned by experimentalists whereas the latter holds applicants’ qualifications constant at their
actual observed values. The two quantities are different so long as the interaction between racial
discrimination and the level of qualifications does exist, i.e. 7j(m)=#7(m’) for m#m’. Indeed,
Bertrand and Mullainathan (2004) found that the racial gap is larger when qualifications are
higher, indicating that these two quantities are likely to diverge.

In this setting, the crossover design and its variants may be applicable. In the original study,
the authors directly manipulated the qualifications by creating fictitious résumés (i.e. setting M;
to some arbitrary m). Instead, we could sample actual résumés of African American job appli-
cants to obtain M;(0). Sending these résumés without any modification will allow us to identify
E[Y;{0, M;(0)} | T; = 0]. We could then change the names of applicants to white sounding names
to identify the counterfactual outcome E[Y;{1, M;(0)} | 7; = 0] without changing the other parts
of the résumés (i.e. holding M; constant at M;(0)). The consistency assumption is plausible
here so long as potential employers are kept unaware of the name manipulation as done in the
original study. The no-carry-over effect assumption may be problematic if the same résumé with
different names is sent to the same potential employer over two time periods. Fortunately, this
problem can be overcome by sending these résumés to different (randomly matched) employers
at the same time, thereby averaging over the distribution of potential employers. This strategy is
effective because the assumption of consistency and no carry-over effects only need to hold in
expectation. Thus, researchers will be able to infer how much of labour market discrimination
can be attributable to race rather than qualification of a job applicant.

4. Experimental designs with imperfect manipulation

Although the above two experimental designs yield greater identification power than the stan-
dard single-experiment design, the direct manipulation of the mediator is often difficult in
practice. Moreover, even when such manipulations are possible, the consistency assumptions
may not be credible especially if a strong intervention must be given to control the value of
the mediator. To address this issue, we consider new experimental designs that generalize the
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previous two designs by allowing for the imperfect manipulation of the mediator. These designs
might be useful in the situations where researchers can only encourage (rather than assign)
experimental subjects to take a particular value of the mediator. Such randomized encourage-
ment has been previously studied in the context of identifying treatment effects (Angrist et al.,
1996) and principal strata direct effects (Mattei and Mealli, 2011).

Here, we consider the use of randomized encouragement for the identification of causal
mechanisms, which may be preferable even when the direct manipulation is possible because
subtle encouragement tends to increase the credibility of the consistency assumption about the
mediator manipulation. Our use of encouragement differs from some previous works in the lit-
erature where the treatment variable is used as an instrumental variable for the mediator under
the standard design with the assumption of no direct effect of the treatment on the outcome
(e.g. Jo (2008) and Sobel (2008)). In contrast, we allow for the direct effect of the treatment
on the outcome, the identification of which is typically a primary goal of causal mediation
analysis.

4.1. Parallel encouragement design

The parallel encouragement design is a generalization of the parallel design where the manip-
ulation of the mediator can be imperfect. Thus, instead of directly manipulating the mediator
in the second experiment, we randomly encourage subjects to take a particular value of the
mediator.

4.1.1. Set-up

Formally, let Z; represent the ternary encouragement variable where it is equal to 1 or —1 if
subject i is respectively positively or negatively encouraged and is equal to 0 if no such encour-
agement is given. Then, the potential value of the mediator can be written as the function of
both the treatment and the encouragement, i.e. M;(¢,z) for r=0,1 and z=—1,0, 1. Similarly,
the potential outcome is a function of the encouragement as well as the treatment and the
mediator, i.e. Y;(¢,m, z). Then, the observed values of the mediator and the outcome are given
by M;(T;, Z;) and Y;{T;, M;(T;, Z;), Z;} respectively. For simplicity, we assume that the mediator
is binary. The randomization of the treatment and the encouragement implies that the following
independence assumption holds.

Assumption 8 (randomization of the treatment and the encouragement). For m =0, 1,
{Yit,m, ), Mi(t',2)) 11,1 €{0,1}, 2,2/ € {~1,0,1}} LL{T;, Z;}.

Here, both the treatment and the encouragement are assumed to be under perfect control of the
analyst and thus conditioning on pretreatment or pre-encouragement covariates is not required.

Furthermore, as done in the standard encouragement design, we make two assumptions
(the ‘exclusion restriction’ and ‘monotonicity’; see Angrist et al. (1996)). First, we assume that
the encouragement affects the outcome only through the mediator. This represents the con-
sistency assumption under the parallel encouragement design. Second, we assume that the
encouragement monotonically affects the mediator, i.e. there are no ‘defiers’ who behave exactly
oppositely to the encouragement. Without loss of generality, these two assumptions can be
formalized as follows.

Assumption 9 (consistency under the parallel encouragement design). For all 1 =0, 1 and
Z,le_lzoa 17

Yi{t, Mi(t,2),z} =Yi{t, Mi(1,7/),7'} if Mi(t,2) = M;(t,2).
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Assumption 10 (monotonicity). Fort=0,1,
Mi(ta 1) 2 Mi(t, O) > Mi(t: - 1)

Because the potential outcomes do not directly depend on the value of the encouragement
under assumption 9, we can write them simply as Y;(z,m) for any ¢ and m.

Under the parallel encouragement design, our quantity of interest is the average indirect
effects for ‘compliers’ which refer to those who are affected by either the positive or negative
encouragement in the intended direction under a given treatment status. We note that compli-
ance status may depend on how the encouragement is implemented. The quantity that we focus
on is analogous to the average complier causal effects, which can be identified under the stan-
dard encouragement design (Angrist et al., 1996). We can formally define the average complier
indirect effects under this setting as follows:

S*(t) = [E[Yl{tf Mi(ts 0)} - Yi{t> Mi(t/s 0)} | (Ml(ta - 1)9Mi(t7 O)a Mi(t, 1)) € {(0: Oa 1)3 (09 13 1)}]9
forr=0,1and r#¢.

4.1.2.  Sharp bounds

Given this set-up, we study the identification power of the parallel encouragement design again
using a bounds approach. Again, for simplicity and comparison with the other designs, we
focus on the situation where the outcome is also binary. In this case, under assumptions 8-10,
the sharp bounds can be derived numerically by using a standard linear programming routine.
Appendix A.5 provides the details of the derivation of the sharp bounds on the average complier
indirect effects.

4.1.3. Example

As a potential application of the parallel encouragement design, we consider the media
framing experiment by Brader ef al. (2008) which used the single-experiment design. As dis-
cussed in Section 2.3, the mediator of interest in this study is the level of anxiety: a psycho-
logical factor that is difficult to manipulate directly. Although this prevents researchers from
using the parallel design, the parallel encouragement design may be applicable to this type of
psychological experiment. Under the parallel encouragement design, we first randomly split
the sample into two groups. Then, for one group, the treatment is randomly assigned but no
manipulation of mediator is conducted. For the other group, experimenters randomize the
treatment and the indirect manipulation to change the level of anxiety. Since the manipulation
of a psychological factor is likely to be imperfect, this constitutes the parallel encouragement
design.

In the psychological literature, there are several ways to manipulate emotion indirectly. A
common method is the autobiographical emotional memory task, where participants write
about an event in their life that made them feel a particular emotion (e.g. Lerner and
Keltner (2001)). Using such a task to manipulate anxiety would satisfy the consistency assump-
tion (assumption 9) if, for any given treatment assignment and anxiety level, a subject reports
the same immigration preference regardless of whether their anxiety level was manipulated or
chosen by the subject. The assumption is violated if, for example, a subject interprets the task of
writing a negative experience as an indication that the experiment is concerned about negative
aspects of immigration. Protocol to minimize such problems (e.g. by not mentioning immigra-
tion or other ethnicity in task instructions) can help to make the consistency assumption more
plausible.
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The other key assumption of monotonicity (assumption 10) will be violated if there are any
subjects whose level of anxiety would be decreased by the writing task that was purported to
increase anxiety. This could be a serious concern because it has been found that the act of
expressing a certain emotion can have a cathartic effect on the emotion and decrease its inten-
sity in one’s mind. Careful choice of a writing task will thus be a crucial factor in successfully
implementing this design in practice.

4.2. Crossover encouragement design

It is also possible to generalize the crossover design that was described in Section 3.2 so that the
imperfect manipulation of the mediator is allowed. Under this crossover encouragement design,
after the treatment has been randomized, the value of the mediator and then optionally the value
of the outcome are observed for each unit in both treatment and control groups. Thus, the first
period remains unchanged from the crossover design except that the measurement of the out-
come variable is no longer required for identification (though it is recommended as discussed
below). The second period, however, is different. After assigning each unit to the treatment
condition opposite to their first period status, the experimenter encourages randomly selected
units so that their mediator equals its observed value from the first period.

As shown below, under some assumptions this design identifies average indirect effects for
the specific subpopulation that we call the pliable units. Whereas the information from the first
period is primarily used to determine the direction of encouragement given in the second period,
the (randomly selected) group that receives no encouragement in the second period is used to
learn about the proportion of these pliable units, or those who would change behaviour in
response to the encouragement. We then combine this with other information obtained from
the second period to identify causal mechanisms among the pliables.

4.2.1. Set-up

Formally, let V; represent the randomized binary encouragement variable where V; =1
indicates that unit i receives the encouragement to take the same value of the mediator during
the second period as in the first period. V; =0 represents the absence of such encouragement
(i.e. do nothing). Then, the potential values of the mediator during the second period can be
written as M;; (¢, v) under the treatment status ¢ and the encouragement status v of this period.
Similarly, we write the potential outcomes for the second period as Y;>(¢,m, v) where ¢ and m
represent the values of the treatment and the mediator during the second period, and v denotes
the encouragement status. As before, we assume consistency in that the indirect manipulation
of the mediator through the encouragement has no direct effect on the outcome other than
through the resulting value of the mediator. This assumption, together with the assumption of
no carry-over effect (for both the mediator and the outcome), can be formalized as follows.

Assumption 11 (consistency and no carry-over effects under crossover encouragement design).
Foralls, ¢, v=0,1,

M;1 () =M;»(2,0) and Y;i{t, M1;(t')} =Y {t, Mi2(t,v), v} if Mj1 (") =M (t,v).

The first part of this assumption allows both the potential mediator in the first period as well
as the second-period mediator when V; =0 to be written simply as M;(¢) for any ¢. Similarly, the
notation for the potential outcomes in both periods can be simplified to Y;(¢, m).

One advantage of the crossover encouragement design is that, unlike the crossover design,
researchers can test observable implications of the consistency and no carry-over effects
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assumptions. First, it is possible to test whether the first equality in assumption 11 holds on
average by comparing F(M;||T; =1) with E(M;»|T; =1 —1,V; =0) for t =0, 1. This is because
these two quantities are equal to the expected values of the two potential mediator values in
the first equality in assumption 11 when both the treatment and the encouragement are ran-
domized. Second, the second equality in assumption 11 can be partially tested by comparing
E(Y;1|T; =t, Mj1 =m) with E(Ypp|T;=1—1t,Mj»=m,V;=0) for m =0, 1. This is because these
two quantities are equal to E{Y;| (t,m)|M; (t) =m} and E{Y;»(¢,m, 0)|M;>(¢,0) = m } respectively
and thus under the assumption that the first equality in assumption 11 is true the comparison
yields a test whether the second equality holds in expectation when v=0. However, it should be
noted that this procedure has no implication for the case in which v=1 and thus cannot be used
for testing whether there is a direct effect of encouragement itself on the outcome. Nevertheless,
we recommend measuring the first period outcome because it allows testing whether there is
any carry-over effect and it often involves little additional cost.

In addition to these assumptions, which are essentially equivalent to the assumptions that are
made under the crossover design, we rely on the following monotonicity assumption as done
under the parallel encouragement design. In particular, we assume that no unit would take the
value of the mediator equal to its observed value from the first period only when they are not
encouraged. When the mediator is binary, the assumption can be written formally as follows.

Assumption 12 (no defier). For any r=0,1 and m e M,
Pr{Mp(1—1,0)=m,Mp(1—t,)=1—m|M;1=m,T;=1t}=0.

Finally, the randomization of the treatment and the encouragement implies the following
assumption.

Assumption 13 (randomization of treatment and encouragement). For any m* € M and
*e{0,1},

{Yi(t,m), Yia(¢',m, v), M1 (1), Mip(t2) : 1,8, 11, 1p,v€{0, 1}, me M} LLT;
{Yio(t',m,v), Mip(12) : 1, 1,0 € {0, 1}, m e M} IL V;|Mjy =m™, T; =1*.

4.2.2. Identification

Under these assumptions and binary mediator and outcome variables, we can identify the aver-
age indirect effect but only for a subset of the population who can be successfully manipulated
by the experimenter via the encouragement. These pliable units are those for whom the value
of the mediator in the second experiment is the same as the value in the first experiment only
if they are encouraged. We focus on this subpopulation because, as in instrumental variable
methods, this design is not informative about those who are not affected by the encouragement.
Formally, the average indirect effects among pliable units are defined as

Sp() = EY;{t, Mi(1)} — Yi{t, Mi(0)} | Min(,0) =1 — Miy (1 — 1), Min(t,1) = M1 (1 = 1],

for t=0,1. In Appendix A.6, we prove that these quantities are identified under the crossover
encouragement design with assumptions 11-13.

4.2.3.  Example

As a potential application of the crossover encouragement design, we consider the recent survey
experiment by Hainmueller and Hiscox (2010) about the effects of issue framing on preferences
towards immigration. They studied how immigration preferences of low income US citizens are
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influenced by whether they are asked about high or low skill immigrants. One of the hypotheses
that they considered is that competition over public resources between natives and immigrants
leads to greater opposition towards immigration. If this is true, natives will form negative expec-
tations about the effect of immigrants on access to public services. Although Hainmueller and
Hiscox (2010) could not directly test this mechanism, a modification of their original experi-
mental design may permit this.

The study used the standard 2 x 2 crossover design where survey respondents were first ran-
domly asked to consider either high or low skill immigrants and then to express their policy
preferences about increasing immigration. 2 weeks later, the same respondents were surveyed
again, except that they were asked about the other skill group, thereby reversing the treat-
ment. Hainmueller and Hiscox (2010) found that expressed preferences about immigration
differ substantially depending on whether respondents were asked about low or high skill immi-
grants. Low income respondents who opposed immigration after being exposed to the low
skill immigrant frame tended to become favourable when asked to consider high skill immi-
grants.

To investigate the hypothesized causal mechanism, the original experimental design may be
modified as follows. Following the framing about high (7; = 1) or low skill immigrants (7; =0),
we would ask respondents for their expectations about the ease of access to public services or
the availability of welfare services in the future (M;1). In the second experiment, for the same
respondents, the skill treatment would be reversed but the experiment would include an addi-
tional manipulation designed to change expectations about public service access in the same
direction as was observed in the first experiment (V;). For example, if someone in the first exper-
iment received the low skill frame and stated that they expect future access to public services
to decline, then the second period manipulation of these expectations could be in the form
of a news story reporting that state budgets were unlikely to be able to support future public
service spending. Following this manipulation of the mediating variable the respondents would
be asked again for their expectations about public service access (M;;) and the preferences over
immigration flows (¥;?).

Is the no-carry-over effect assumption likely to be met in this example? In the original experi-
ment Hainmueller and Hiscox (2010) staggered the two waves of their survey by approximately
2 weeks and found little carry-over effects. The long wash-out period in their design makes
the no-carry-over effect assumption more plausible. As for the consistency assumption, the
key question is whether the use of a news story has a direct influence on subjects’ preferences
over immigration other than through the hypothesized mechanism. The answer to this question
perhaps requires additional investigation.

5. Numerical example

We now illustrate some of our analytical results by using a numerical example based on the
media framing experiment by Brader ef al. (2008). As described earlier, the substantive ques-
tion of interest is whether the effect of media framing on subjects’ immigration preference is
mediated by changes in the level of anxiety. Table 1 reports descriptive statistics and estimated
average treatment effects computed from the original experimental results. Respondents in the
treatment condition (Latino image and negative tone) exhibited significantly higher levels of
anxiety and opposition to immigration than did respondents in the other conditions, leading
to the estimated average treatment effects significantly greater than 0.

Here we conduct a simulation study using these results as a starting point. We first gen-
erate a population distribution of the potential outcomes and mediators as well as the
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Table 1. Descriptive statistics and estimated average treatment effects from the immigration experimenty

Response variable Results for Results for Average
treatment group control group treatment effect
(standard error)

Mean Standard Mean Standard
deviation deviation
Anxiety level 0.603 0.493 0.328 0.471 0.275 (0.069)
Opposition to immigration 0.824 0.384 0.641 0.481 0.182 (0.058)
Sample size 68 198

+The middle four columns show the mean and standard deviation of the mediator and outcome variables for
each group. The last column reports the estimated average causal effects of the treatment (Latino image and
negative tone) as opposed to the control condition on the hypothesized mediator and outcome variables along
with their standard errors. The estimates suggest that the treatment affected each of these variables in the expected
directions.

compliance types with respect to the encouragement. To ensure the comparability of our simu-
lated data with the distribution of observed variables, we randomly draw the joint probabilities
of these causal types from a prior distribution which is consistent with the original data. The
resulting population distribution is thus generated in such a way that the observed data in
Table 1 could have come from this data-generating process. We then randomly assign both the
experimental condition for the parallel design (D;) and the encouragement status (Z;) to this
simulated population. The resulting proportions of compliers (as defined in Section 4.1) are
0.730 for the treatment group and 0.392 for the control group. Finally, the observed values
of the mediator and outcome under these designs are determined on the basis of these two
variables.

Fig. 2 presents the sharp bounds on the average indirect effects for r=1 (Fig. 2(a)) and t =0
(Fig. 2(b)) under different experimental designs calculated from the simulated population. In
both panels, the top three full circles represent the true values of the average indirect effects
(6(1)=0.301 and 6(0) = —0.045) and the bottom circles indicate the complier average indirect
effects (6* (1) =0.392 and 6*(0) =0.014). The horizontal bars represent the bounds under (from
top to bottom) the single-experiment design, parallel design and parallel encouragement design.
For the parallel encouragement design, we present the sharp bounds for both §(r) and §* (7).
The graphs illustrate the relative identification powers of these experimental designs. Under
the single-experiment design, the sharp bounds are wide for both (1) and 6(0) and include
0 ([—0.175,0.825] and [—0.642,0.359] respectively). In contrast, the parallel design identifies
the sign of (1) to be positive without relying on any untestable assumption ([0.090, 0.693]),
although it unsurprisingly fails to identify the sign of 6(0) ([—0.362,0.358]), whose true value is
close to 0.

The parallel encouragement design is slightly less informative about the average indirect effects
than the parallel design but nonetheless identifies the sign of §(1), with the sharp bounds of
[0.026,0.718] and [—0.403,0.359] for 6(1) and 6(0) respectively. Moreover, the parallel encour-
agement design is even more informative about the complier average indirect effects; the sharp
bounds for §*(¢) are narrower than any of the bounds for the average indirect effects for both
t=1 and r=0 and do not include 0 for the former ([0.089, 0.686] and [—0.212, 0.183]). In sum,
for our simulated population based on the experimental data of Brader ez al. (2008), the parallel
design and parallel encouragement design are substantially more informative about the average
indirect effects than is the standard single-experiment design.
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Fig.2. Identification power of alternative experimental designs: sharp bounds on the average indirect effects
for (a) the treatment and (b) the control conditions calculated on the basis of the hypothetical population that
we generated (e, true values of 5(t) (top three) and §*(t) (bottom); — sharp bounds under (from top to
bottom) the single-experiment design, parallel design and parallel encouragement design); the graphs show
improved identification powers of the new designs compared with the traditional single-experiment design

6. Concluding remarks

The identification of causal mechanisms is at the heart of scientific research. Applied research-
ers in a variety of scientific disciplines seek to explain causal processes as well as estimating
causal effects. As a consequence, experimental research has often been criticized as a black
box approach that ignores causal mechanisms. Despite this situation, both methodologists and
experimentalists have paid relatively little attention to an important question of how to design
an experiment to test the existence of hypothesized causal mechanisms empirically. In this paper,
we answer this question by proposing alternative experimental designs and analysing the iden-
tification power of each design under various assumptions.
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In applied research, the most dominant approach has been the single-experiment design where
only the treatment variable is randomized. The fundamental difficulty of this approach is that
like in observational studies the absence of unobserved confounders is required for identification
but this is never guaranteed to hold in practice. To overcome this limitation, we propose several
alternative experimental designs that involve some kind of manipulation of mediator. Some
designs that we consider require the direct manipulation of mediator whereas others allow for
the indirect and imperfect manipulation.

The key assumption under these experimental designs is that the action of manipulating the
mediator does not directly affect the outcome (other than through the fact that the mediator
takes a particular value). To satisfy this consistency assumption, the mediator must be manipu-
lated in a way that experimental units behave as if they chose the mediator value on their own.
This may appear to suggest that any experimental design involving some kind of manipulation
of the mediator is potentially of limited use for the analysis of causal mechanisms. However,
through the discussion of recent social science experiments, we have shown that such manipu-
lation may become possible through technological advances in experimental methodology (e.g.
the neuroscience experiment that was discussed in Section 3.1) as well as the creativity on the
part of experimenters (e.g. the labour market discrimination experiment that was discussed in
Section 3.2).

The methodology proposed emphasizes the identification assumptions that are directly linked
to experimental design rather than those on the characteristics of experimental units. Although
experimenters can play only a passive role when making the second type of assumptions, they
can improve the validity of the first type of assumptions through careful design and implementa-
tion of experiments. Thus, we hope that experimental designs considered in this paper will open
up the possibilities to identify causal mechanisms experimentally through clever manipulations
and future technological developments. Although in this paper we draw only on social science
examples, we believe that our designs could be used with slight or no modification for other
settings, such as large-scale medical trials or public policy evaluations.
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Appendix A

A.1. Relation to Geneletti’s (2007) indirect effects

On the basis of a non-counterfactual framework of causal inference, Geneletti (2007) showed how to
identify alternative quantities called the ‘generated direct effect” and ‘indirect effect’, which together add
up to the average causal effect 7. The relative advantages and disadvantages of the counterfactual versus
non-counterfactual approaches to causal inference are beyond the scope of the current paper (see Dawid
(2000)). However, it appears that Geneletti’s indirect effect can be re-expressed by using potential out-
comes in the following way: &7(r) = E{Y;(t, M\) — Y:(t, My) | Fuy = Fu0)» Fury = Far1y}» for t=0, 1, where
Fy represents the distribution of random variable X. This differs from the average natural indirect effect
6, which for comparison can be rewritten as E{Y;(¢, M) — Y;(t, Mo)| My = M;(0), My = M;(1)}.
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The difference between 67(f) and 6(¢) is rather subtle but important. For illustration, we use Geneletti’s
example (see her section 3.1.2, point (b)) about a drug treatment for a particular disease that may trigger
headaches as a side effect. In the example, aspirin is taken by patients to alleviate the headaches and acts as
a mediator for the outcome of disease prognosis. In this context, the natural indirect effect represents the
causal effect of the drug on the disease prognosis that is transmitted through changes in patients’ aspirin in-
take following their administration of the treatment drug. In contrast, Geneletti’s indirect effect represents
the causal effect of a hypothetical intervention where aspirin intake is randomly assigned according to the
population distribution of natural levels of aspirin under the treatment and control conditions. Therefore,
this alternative quantity does not directly correspond to a causal process unless units in the population are
assumed to be exchangeable (which is a difficult assumption to maintain given the heterogeneity of human
populations). Our approach, however, avoids this exchangeability assumption and develops experimental
designs that help to identify causal mechanisms under less stringent assumptions.

A.2. Sharp bounds under the single-experiment design

We present the sharp bounds on the average indirect effects under the single-experiment design.
These bounds can be obtained by solving a linear optimization problem with respect to 6(1) and 6(0)
under the constraints that are implied by assumption 1 alone. Here we take a simpler alternative approach
which uses the equality given in Section 2.1, 7=6(¢) + (1 — 1), i.e. we subtract the sharp bounds on {(1 —¢)
derived by Sjolander (2009) from the average total effect, which is identified under assumption 1, to obtain
the following bounds on 6(¢) for t =0, 1:

—Poo1 — Po11 - [ Pioi+ P
max ¢ —Pori — Poro — Prio p <6(1) <min ¢ Pojo+ Prio+ Puur ¢ (6)
— Pooo — Poo1 — P1oo Pooo + Piroo + Prot

—Pioo — Pr1o _ [ Pooo + Poio
max ¢ —Pori — Piip — Prio p <6(0) <min ¢ Py + Prii+ Poro ¢ » @)
—Poo1 — Pro1 — Proo Pooo + Poo1 + Pror

where B, =Pr(Y;=y,M;=m|T;=t, D;=0).

A.3. Proof of theorem 1

We begin by noting that both E[Y;{r, M;(r)}] and E{Y:(t,m)} are identified for any ¢ and m under
assumptions 1, 3 and 4. The former can be identified from the first experiment by [E(Y:|T; =1, X; =
x, D; =0)dFyx, p—o(x) and the latter from the second experiment by f EY;|Ti=t,Mij=m,X;=x,D; =
1) dFx, p,=1(x). Thus, by following the proof of theorem 2.1 of Robins (2003), under assumption 5 the
average indirect effect is identified and given by 6(1) = 6(0) =7 — ((¢) where (1) =E{Y;(1,m) — Y;(0,m)}
for any m e M.

A.4. Sharp bounds under the parallel design

We derive the large sample sharp bounds on the average indirect effects under the parallel design with
binary mediator and outcome variables. For 6(1), we just need to derive the sharp bounds on E[Y;{1, M;(0)}]
because E[Y;{0, M;(0)}] is identified as Pr(Y;=1|T; =0, D; =0). From equation (5), the former quantity
can be decomposed as

1 1
[E[Y,{l, M,(O)}]: Z Z (ﬂ-lyml +7T)'17710)

y=0 m=0

where Ty, yommy =Pr{Y;(1,1) =y, ¥;(1,0) = yo, M;(1) =m,, M;(0) =m,} >0 with the constraint

1 1 1 1
22 2 2 Myygmme =1
y =0 my=0

This quantity can be maximized or minimized via standard linear programming techniques. Thus, we can
derive the sharp bounds by finding the optima of this quantity under the following constraints implied by
the experimental design:
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1 1 1

Pr(M,-:l | T,=0, D,=O)= Z Z Z 7Ty1y0m15

¥1=0 yo=0 m=0
1 1
PI‘(M,=1|Tl=1,D,=0)=Z Z Zﬂ-}'lyolmﬁ

¥1=0 yp=0 m=0

1

1

Z Z T 1ygmmg 1fm=1,
Pl’(Y,:l,M1:m|Tl:1,D,:()): y01=0m01=0

Z Z Tyy lmmg lfm=0,

y1=0mo=0

1 1 1 .

Z Z Z T Lygmymq lfmzl,
Pr(Yi=1|M;=m,Ti=1,D;=1)= y1)1:0m11:0m01:0

Z Z Z Ty lmymy if m=0.

y1=0m;=0myp=0

The sharp bounds on 6(1) can then be obtained by combining these constraints with the already identified
quantity, E[Y;{0, M;(0)}]. A similar calculation yields the sharp bounds on §(0).
The resulting sharp bounds under assumptions 1, 3 and 4 are given by

— Poor — Po1t Py + P
—Po11 — Po1o — Pr1o — Poo1 + Qoo Poo + Pr1o + Pro1 + Pri1 — Qo1
— Pooo — Poor — Proo — Por1 + Qorn S : Pooo + Proo + Pro1 + P11 — Qi

max <46(1) <min s 8
—Poo1 — Po11 + Qoot — Q111 séhs Pior + P11+ Qoor — Q111 ®)
—Poo1 + Pro1 — Q101 Pr11 — Poin + Qont
—Po11+ P — Qi Pio1 — Poor + Qoo
—Pioo — P11o Pooo + Poro
—Po11 — P111 — P11 — Proo + Qooo Por1 + Pri1 + Poro + Pooo — Q100
—Poo1 — Pro1 — Proo — Prio+ Q1o 3 : Pooo + Poor + Prot + Poto — Qoo

max < 6(0) < min s 9
—Pioo — Pr1o+ Q100 — Qoo AR Pooo + Poro + Qo0 — Qoo ©)
— P10+ Po1o — Qoto Poro — Pr1o+ Q110
—P1oo + Pooo — Q100 Pooo — Proo + Q100

where Py, =Pr(Y;=y, Mi=m|T;=t, D;=0) and Q,,, =Pr(Y;=y|M;=m,T;=t,D;=1).

As expected, these bounds are at least as informative as the bounds under the single-experiment design.
This can be shown formally by deriving the sharp bounds on Q,,, under the single-experiment design
and then substituting them into equations (8) and (9). For example, under the single-experiment design,
we have Py < Qoo < Poor + Poit + Piit, Porr < Qott < Poor + Piot + Porr and —Pior — Pii1 < Qoot — Qi <
Poo1 + Por1.- Thus, under this design, the expression for the lower bound of §(1) given in equation (8) reduces
to that of equation (6).

Moreover, the above expressions of the bounds imply that, unlike the single-experiment design, the
parallel design can sometimes identify the sign of the average indirect effects. However, there is a trade-off
between the informativeness of the lower bound and that of the upper bound. For example, if the values
of Qoo1 and Qg1; are large or small, then the lower bound of 6(1) will be respectively large or small but so
will be the upper bound of §(1).

A.5. Sharp bounds under the parallel encouragement design
The average complier indirect effect can be decomposed and expressed with respect to the principal strata
probabilities as

1 1
01 10 01 10
> X (dJmLIOm’Ion +¢mgllm’]001 _¢mLI 1m} 001 me]Om’IOII)

0 —
m’”_ =0m|=0

Pr{M;(t, —1)=0, M;(t,0) = M;(t, 1) =1} +Pr{M;(t, — 1) = M;(t,0) =0, M;(t, ) =1}’

O 10)
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where
Qb;\;l(]’ylm/m’m 1momi :Pr{Yl(ta O) = Yo, Yi(la 1) =Y Mi(t/a - 1) :m/—l7 Mi(t/’o):mé)’
170" =
Mi(l,a I)Zm/la Mi(la - 1):’/nfla Mi(la 0) =my, Mi(ta I)Zml} >Oﬂ

with the constraint
1 1 1

1 1 1 1 1
S I SED VD IED D S DRTH WIS S}
y0=0 y1 = =

m’_ =0 my=0mi=0m_; =0 my=0 m;=0

Note that the denominator can be identified from the observed data and expressed as PJO, + P;rO, - Py —
P, where P}, =Pr(Y,=y, M;=m|T;=t, Z;=—1) and P* =Pr(Y,=y, Mi=m|T,=1t, Z; =1). Thus, the

ymt

sharp bounds on §*(f) can be obtained by maximizing and minimizing the numerator via a standard
linear programming algorithm subject to the following linear constraints implied by the experimental
design:

Pr(Yizya Mi=m | Ti=f, Zi=Z)=Pr{Yi(tam)=y7 Mi([,Z)Zm},
Pr(M;=1|Ti=1,Zi=2) =Pr{M;({',2) =1},

fory=0,1,m=0,1and z=0, 1.

Depending on the context of one’s research, it may be possible to make additional assumptions about
causal relationships between the treatment, mediator and outcome. Such assumptions can be incorpo-
rated as long as they are expressed as linear functions of the principal strata. For example, one may
want to make the no-interaction effect assumption (assumption 5). This assumption can be written as
Pr{Y;(s,1) = Y;(z,0) £ Y:(¢', 1) — Y;(t, 0)} =0 and, since this is linear in principal strata, the sharp bounds
on the average indirect effects with this additional assumption can be derived by using the above framework.

A.6. Identification under the crossover encouragement design
We prove the following identification result under the crossover encouragement design.

Theorem 3 (identification under the crossover encouragement design). Under assumptions 11 and 13,
the average indirect effect among the pliable units is identified and given by

6p(1—=1)=(1=20[{Awol010 + (1 = Aoo) w000 — Avor Dot — (1 = Ao Twoo1 } a0 + { AstoTit10
+ A =Auo)Thoo — AT — A= AnDTho }¥al,
where Ay =Pr(Mp =1|Ti=t, My =m, V=), Uiy mypo =EXYn2 | Ti =1, Mjy =my, Mz =m,, V; =v) and

T - Pr(My =m|T;=1)
" (Moo — M) Pr(Miy =01 Ty = 1) + (A1 — Ao) Pr(Miy = 1| Ti=1)

We begin by defining a trichotomous variable L; € {—1, 0, 1} to indicate the pliability type of unit i with
respect to the encouragement V; under treatment status ¢. That is, those units with L;, =0 are pliable in
the sense that their mediator variable always takes the value as encouraged, i.e. M;,(1 —¢,0)=1—m and
Myp(1—1,1)=m given M;; =m and T; =t¢. For those with L;; =1, the value of the mediator in the second
experiment is always the same as in the first experiment, i.e. Mj>(1 —t,0) = M;>(1 —¢, 1) =m, whereas for
those with L;; = —1 the second mediator status is the opposite of the first mediator status regardless of the
encouragement, i.e. M;(1 —1,0) = M;;(1 —t,1) =1 —m. By assumption 12, these three types exhaust all
the possible pliability types, and the latter two constitute the group of non-pliable units in this population.

Next, note that the proportion of each pliability type is identifiable for each stratum defined by 7; and
M| (¢) because of the randomization of encouragement, i.e. we have the equalities

Oum =Pr(Mp=m|T;=t, Mjy =m, V;=0),
Gim=Pr(Mp=1-m|T;=t, My =m,V;=1),
Gom =Pr(Mp=m|T;=t, Mjj=m,V;=1) — d14,
=Pr(Mp=1-m|Ti=t, My =m,V;i=0) — ¢_1m,
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for t,m=0, 1, where ¢, =Pr{L; =p|T;=t, M; (1) =m}. In addition, we also have the equalities

1_‘Im(lfm)l :[E{Yl(l —1, 1 _m) | E:la MiIZmaLit:_l}a
thm():IE{Yi(l _tam) | EZZ, Mil =maLit=1}7

th(lfm)(): lqi*;"l” [E{Yi(l_ty1_m)|7}:taMi1:maLir:_1}
m
1 Poon Eyi(1—t, 1 —m)|T; =1, Mjy =m, L;; =0},
— Plim
T (z)Otm E
mml = 7 {Yi(l_t’m)|Ti:tsMi1:maLir:0}
1- —ltm
+&[E{Yi(1—l‘,m)|T1=f,Mi1=m,Lir=1}y
1_Qz)fltm

for any t,m =0, 1. By solving this system of equations, we can identify all the conditional expectations in
the above expression. Then, the average indirect effects for the pliable group can be identified by using the
following relationships:

E[Y {1 -1, M;(1-0}L;=0,V;=0,T,=1]
=HYn{l—t,M»(1—-1,0),0}|L;=0,V;=0,T;=1]
=Y EYo{l-1t,M>(1-1,0),0}|My=m,L;=0,V;=0,T;=1]Pr(M;y =m|L;=0,V;=0,T;=1)
m=0,1

= 5 E{Yi(l =1, 1 —m)|My =m, Ly =0, T, =1} Pr(Myy =m|L;, =0, T, =1),
m=0,1

where the first equality follows from assumption 11, the second from the law of total expectations and the
third from assumptions 11 and 13 as well as the definition of the pliability types. In addition, we have

BV {l -1, Mi;(O}|L;=0,Vi=1,T;=1]
=EYo{l -1, Mn(1-1,1),1}|L;; =0, V,=1, T, =1]
= > EYo{l—t,Mp(1—t,1), 1}IMy=m,L;=0,V;=1,T;=1]Pr(Myy =m|L;; =0, Vi=1,T,=1)
m=0,1
= 5 E{Y(l—t,m)[My =m, Ly, =0, T, =1} Pr(My =m|L;, =0, T, =1),
m=0,1

where the first equality follows from assumption 11 and the definition of the pliability types, the second
from the law of toal expectation and the third from assumptions 11 and 13 and the definition of L;,. Note
that the marginal proportion of pliable units is given by

Pr(L;=0)= Z Gom Pr(Ti =t, Miy =m).
m=0,1

Then, we can use the Bayes rule to obtain Pr(M;; =m|L;, =0, T; =1) = ¢osm Pr(T; =t, M;y =m;) /Pr(L;; =0).
Finally, expressions given in theorem 3 can be obtained by substituting observed quantities into the above
expressions.
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Discussion on the paper by Imai, Tingley and Yamamoto

Fabrizia Mealli (Universita di Firenze)

Imai, Tingley and Yamamoto must be congratulated for having attacked the challenging problem of under-
standing causal mechanisms. I like their engagement in exploring experimental designs, because this task
requires spelling out the assumptions that are needed for identification and makes one reflect deeply on
the questions that are asked.

Understanding mechanisms is particularly valuable if it helps to design improved interventions. An
issue that deserves further discussion is whether investigations on pathways should focus on natural direct
and indirect effects. Although these effects have received attention is some disciplines, are they the natu-
ral estimands that may suggest important pathways? Pearl (2001), paragraph 2.2, originally called them
descriptive tools for attributing part of the effect of an intervention to an intermediate variable. But I think
that the tool often fails to provide a good description of how things work, because of the asymmetric roles
of M;(0) and M;(1); in general only one of the potential values of the intermediate variable is chosen as
descriptive of the causal forces under natural conditions. To me, both values are natural, in that they describe
how an individual reacts to a treatment. Their joint value is essentially a characteristic of a subject, so
conceiving a manipulation of one of the two values is like considering changing the value of a pretreatment
characteristic. This is essentially why consistency assumptions are rarely credible: they assume that the
action that is taken to modify the value of a characteristic of a subject has no consequence on the outcome
value. Also, quantities of the type Y;{r, M;(t')}, t #¢', are ill defined and sometimes difficult to conceive
if one is not explicit about the process that led to observing M;(0) and M;(1) (Mealli and Rubin, 2003);
Yi{t, M;(¢")}, t £, are quantities that in a single experiment are ‘a priori counterfactuals’ because they
cannot be observed for any subset of units. Even assuming that consistency holds, there may be subjects,
possibly characterized by covariates’ values, for whom a level of M equal to M;(0) under treatment can
never be reached. If this is so, it means that the experiment is seeking an outcome that never occurs in
real life, so I fail to understand how such a quantity can have some descriptive power. This suggests that,
when interest lies in opening the black box, valuable design issues should be directed more on collect-
ing detailed background covariates and additional outcomes, rather than on generating outcomes under
manipulations of the mediating variable.

Despite recognizing the value of the experiments that are proposed by the authors for opening the
possibility of identifying causal mechanisms through clever manipulation, I find that the type of settings



Discussion on the Paper by Imai, Tingley and Yamamoto 33

where those could be applied most convincingly are those like the example of gender discrimination, where
manipulation does not involve human beings directly.

A better description of how things work is provided by looking at the joint value of the natural levels
of M;(0) and M;(1); those joint values define a stratification of the population into principal strata. Principal
strata effects (PSEs), contrasts of ¥(0) and Y(1) within principal strata, are well-defined causal quantities,
which do not involve a priori counterfactuals (Frangakis and Rubin, 2002). If one is seeking information
on the effect of an intervention that is not attributable to the change in the intermediate variable, it is
sensible to start looking at the effect of the intervention on subjects for whom M naturally does not
change, i.e. M;(0) = M;(1). These PSEs are called dissociative and can be contrasted with associative
effects, i.e. effects in principal strata where M;(0) # M;(1). They allow distinguishing causal effects of
T on Y that are associated with causal effects of 77 on M, from causal effects of 7 on Y that are
dissociative and thereby associated with other causal pathways. The information that is provided by
PSEs is extremely valuable: for example, large associative effects relative to small dissociative effects
would indicate that the intervention has stronger effects on units where it also has an effect on the
mediator. Associative and dissociative effects of equal magnitude would instead indicate that the inter-
vention’s effect is the same regardless of whether it has an effect on the mediator, which would sug-
gest some alternative causal pathways through which the intervention has an effect without having an
effect on the mediator. Even if these different values of PSEs can be due to principal strata heterogene-
ity only, an accurate principal strata analysis can provide useful insights on mechanisms and generate
useful hypotheses that can be confronted with subject matter knowledge and also tested with a con-
firmatory experiment on a newly designed intervention. Looking at the distribution of the covariates
and outcomes within the strata (Frumento et al., 2012) may provide insights on the plausibility of
ignorability assumptions for M(0) and M(1) (Jin and Rubin, 2008) to identify the effects of M on
Y.

I appreciated the authors’ effort to relax perfect manipulation by introducing encouragement designs,
providing new alternative approaches to discover causal mechanisms. However, the effects that these
designs usually help to reveal are essentially PSEs, and I am glad that the authors recognize their useful-
ness, despite their local nature.

The variety of designs presented by Imai, Tingley and Yamamoto shows how some common jargon
is difficult to translate into proper causal statements. They have done a great job by engaging in this
challenging area, and it is therefore my pleasure to propose the vote of thanks.

Carlo Berzuini (University of Cambridge)
The authors must be congratulated for their very stimulating paper that bridges advanced causal inference
methodology and experimental scientific investigation.

The authors choose a causal inference framework based on potential outcomes, where each individual
is characterized by a notional value of the response for each possible treatment. These notional values—
called potential outcomes—are assumed to be fixed for the individual even before any treatment is applied.
In their approach to the encouragement designs, the authors use a powerful device, that of restricting infer-
ential attention to a particular principal stratum (PS), which means a group of individuals defined by the
values of two or more potential outcomes for the same variable. A possible difficulty arises here. This is
because potential outcomes cannot be jointly observed, and therefore we do not generally know who the
individuals in a given PS are. For example, in their treatment of the parallel encouragement design, the
authors restrict attention to the PS of individuals characterized by specific patterns of reaction to specific
stimuli, a property that we shall not normally be able to check in any given individual. The paper offers
examples of clever use of PSs. But the use of this device raises caveats that we shall now discuss.

It will suffice to illustrate the issue in relation to the parallel encouragement design, where the authors
restrict inferential attention to the PS of compliers, i.e. of those individuals who react to the encourage-
ment in the intended direction (M(¢, 1) =1, M(t, — 1) =0). The method assumes that complier status (albeit
unobservable) is a fixed and time invariant attribute of an individual. Is this a reasonable assumption?
For example, is it reasonable to assume that someone we observe reacting to a specific stimulus with an
increase in anxiety will always react to it in the same way? The actual state of affairs might be different.
No matter how we circumscribe the problem—the complier status might really remain a random variable,
causing individuals to move in and out of the group of compliers in an unpredictable way. In this case
our inferences would be based on just those individuals who happened by chance to be compliers during
the experiment. Can we, in such a case, claim that we are learning about a stable mechanism of nature?
In certain applications, a (real or presumed) natural law (of the kind that we encounter in physics) will
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Fig. 3. Causal diagram for the encouragement design, supplemented with intervention indicators
()

support the claim that the compliers constitute a stable and scientifically meaningful stratum of the pop-
ulation, as illustrated by the application example at the end of these comments.

My next comment concerns a reinterpretation of the counterfactual independences that are used in
the paper to express the method assumptions. These independences can be visualized through a causal
diagram of the kind shown in Fig. 3. This diagram represents the parallel encouragement design and has
been obtained by supplementing the graph of Fig. 1 with a node representing the encouragement variable
Z and with the intervention indicators Fr and F. The latter are decision variables indicating the manip-
ulation that is performed on the corresponding variable, respectively 7" or Z, or the absence of such a
manipulation, depending on the specific experimental design. In a potential outcomes interpretation of
the diagram, U contains the entire collection of potential outcomes for M and Y, and these two vari-
ables depend on their direct influences in a deterministic way. With this interpretation, the graph faithfully
represents assumptions 8 and 9, which correspond to the independence property U_LL(T, Z) of the graph
and to the missing Z — Y arrow. With the aid of this graph, we can derive the following equivalent set of
independences expressed in terms of domain variables (rather than of counterfactuals): Y LL(Fz, Fr)|(Z,T)
and Y1 Z|(U, M, T). The former states that the value of Y develops out of (Z, 7) in a way that does not
depend on how these two variables have been generated (no confounding). The latter states that Z does
not directly influence Y.

We conclude by illustrating the main points with the aid of a study of the role of the acid sensing
ion channel 1 (ASIC 1) in the development of multiple sclerosis. The study is a collaboration with Luisa
Bernardinelli, of the University of Pavia. The treatment here consists of inducing in each experimental
mouse a disorder called experimental autoimmune encephalomyelitis (EAE), that simulates the neuro-
pathological changes of human multiple sclerosis. The mice are randomized over two levels of severity
of the induced EAE, the level of severity being represented in the diagram by the binary variable 7.
Each mouse is also characterized by the genotype at the rs28936 locus, which regulates the expression
of ASIC 1 and is represented in our diagram by the three-level variable Z, the number of copies of
the deleterious rs28936 allele. Induction of EAE, and the consequent inflammatory process, causes an
increase in the expression of ASIC 1, and a corresponding neurological deficit, that we record in each
mouse, in the form of an ordinal score, Y, after 15 days from inoculation. Also recorded, in each mouse,
is the level of ASIC I expression, M, in terms of the amount of messenger ribonucleic acid in neuron-
al cell bodies at 15 days from inoculation. Of inferential interest is the extent to which the effect of
EAE (node T') on the deficit (node Y) is mediated by quantitative changes in ASIC 1 expression (node
M), and by the consequent increase in ion influx. The study can be adapted to the proposed paral-
lel encouragement design, with the genetic effect acting as encouragement. Compliers, in this example,
are all mice in which presence of the deleterious rs28936 allele induces an increase in ASIC 1 expres-
sion. Knowledge of molecular mechanisms supports the claim that such compliers represent a stable
majority of the mouse population. Hence, under the assumptions that are represented in our causal dia-
gram, the method proposed by the authors can be used to calculate meaningful bounds on the 7 —
M — Y indirect effect, the effect that inflammation exerts on disease severity via changes in ASIC 1
expression.

It is a privilege for me to have been invited to discuss a paper which will no doubt stimulate plenty of
future research.

I therefore have great pleasure in seconding the vote of thanks.

The vote of thanks was passed by acclamation.



Discussion on the Paper by Imai, Tingley and Yamamoto 35

Guanglei Hong (University of Chicago)

I congratulate Kosuke Imai and his colleagues for another important methodological paper on identify-
ing causal mechanisms. The experimental designs that they proposed have many attractive features. Yet
I am concerned with the assumption of no treatment-by-mediator interaction in the parallel designs and
the assumption of no carry-over effect in the crossover designs. We can find many applications in social
sciences in which these two assumptions are implausible.

I propose a ‘covariate-informed parallel design’ that does not require these key assumptions. This new
design is similar to the parallel design except that the second experiment employs covariate-informed
randomization in the same spirit as a randomized block design.

Let D=0 and D=1 denote the first and second experiments respectively. For simplicity, let treatment
T and mediator M(¢) both be binary. After collecting pretreatment information X, we randomly assign
participants to either D=0or D=1.

Participants in the D=0 group are assigned at random to either 7=0 or 7 =1. We observe M(r) and
specify a prediction function relating X to M(¢) for =0, 1.

Those in the D=1 group are assigned at random to either T=0 or T =1. Applying the prediction
functions that are specified in the first experiment, we obtain, for each participant assigned to treatment
¢ in the second experiment, ¢(¢, X) = pr{M(¢r) = 1|T =1, X}. The participants are then assigned at random
to M(t) =1 with probability ¢(z, X). Analogous to a two-stage adaptive design in clinical trials (Bauer and
Kieser, 1999; Liu et al., 2002), the covariate-informed randomization should have a higher compliance
rate than a simple randomized design.

In the covariate-informed parallel design, treatment and mediator are both randomized. This design
requires the stable unit treatment value assumption and the consistency assumption. If using pretreatment
information to create blocks, we may estimate the block-specific treatment effects as well as the average
treatment effect. By comparing each of these effects across the two parallel experiments, we may partially
test the consistency assumption. In the second experiment, we may test the no treatment-by-mediator
interaction assumption not only on average but also within each block.

More importantly, when the no-interaction assumption fails, researchers can nonetheless apply ratio
of mediator probability weighting to estimate the counterfactual outcome E[Y{1, M(0)}] (Hong, 2010;
Hong et al., 2011). For a participant assigned to 7 =1 and to mediator value m in the second experiment,
the weight is

_ pr{M(0)=m|T=0,D=1,X}
T pr{M()=m|T=1,D=1,X}

We can show that E(wY|T =1, D=1)=E[Y{1, M(0)}]. Future research may investigate the sensitivity of
results to the specification of the prediction functions.

Brian L. Egleston (Fox Chase Cancer Center, Philadelphia)

I enjoyed this paper. The authors provide useful details on assumptions that are needed to identify medi-
ational pathways. I do worry, however, whether we are doing scientists a disservice by focusing on indi-
rect and direct effects as targets of investigation. Some of the interest in indirect and direct effects can
probably be tied back to Wright’s (1921) work on path analysis. Many scientists might be using the
outgrowth of path analytic techniques without considering whether the estimands are germane to their
research.

Imai, Tingley and Yamamoto have a particular focus on ‘natural’ effects (Pearl, 2001), as shown in
equations (2) and (3) of their paper. Natural effects are not necessarily useful in cancer therapeutic devel-
opment. A current goal of much research is to identify causal pathways of cancer growth that can be
blocked. Although this research has led to the creation of useful drugs, the therapeutic effect has often
been less than ideal. One problem is that the human body has built-in biologic redundancy. Hence, if a
pathway is blocked, the body will often find another mechanism to achieve the same goal. This has led to
estimands of interest that differ from those of focus by the authors.

Notationally, let G, represent cancer-related gene number z for z=1,...,n (G, =1 if G, is active and

=0 otherwise). Let T(C) represent survival time under cancer state C (C =0 if no cancer and C =1 if
cancer) Let T(C, G,) and T(C, G, G,) represent potential survival outcomes under G; alone and with G,.
Current therapeutic research is interested in creating a situation in which E[T(1)]= E[T(0)]. Using inhib-
itors, G, becomes manipulable. A first step in development is to investigate whether E[T(1,0)]= E[T(0)].
Unfortunately, scientists generally find that E[7T(1,0)] < E[T(0)]. However, in the course of investigating
why the survival benefit when inhibiting G isnot as great as expected, researchers discover that G, has taken
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over many of the functions of G,. Previously, G, was not strongly implicated as a potential confounder or
mediator. A new inhibitor of G, is developed and investigators find that E[T(1, 0)] < E[T(1, 0, 0)] < E[T(0)],
and the cycle of discovering why blocking pathways is not as successful as intended continues.

Although G; might be a mediator of the relationship of 7(C) and G;_; for j> 1, the relationship is
not necessarily discoverable until G;_; is inhibited. The estimation of E[T(1,0)] and E[T(l, 0, 0)] involves
manipulation of the mediators, and the natural effects are of little inherent interest.

Roland R. Ramsahai (University of Cambridge)
The paper computes bounds on 6() for the simple experiment design, assuming that ¥; is deterministi-
cally related to (M;, T;). This is computed from 7= 6(#) + (1 —¢) and the bounds on ¢(1 —¢) in Sjoélander
(2009). For the decision theoretic direct and indirect effects, 7= 5t + § (1 = 1) (Didelez et al., 2006;
Geneletti, 2007) and the bounds on ¢f(1 — ) and (1 — 1) are identical (Ramsahai, 2012). Therefore these
bounds are valid within the decision theoretic framework (Dawid, 2002), which involves no determinism.
The paper also derives bounds on (1) for the parallel experiment design, assuming that Y; is deter-
ministically related to (M;, T;). Let s v (0 be the individual indirect effect, where U represents the relevant
individual characteristics. Since U J_LTlD Oand ULL(T,M)|D=1

PymtzEU(pfr/m“)a pirjmh_efz/mz mt>
_QymtzEU(pﬁm[)a pij\mr_evmﬁ )
80 = Eu{oy(}, 6 ()= (0%, — 00 (@1 — &y

where pi =P =y,M=m|T=1,0), 6, =pt,, and ¢, = p, . From expression (11), the method of

Dawid (2003) and Ramsahai (2007) obtalns 1dentlca1 bounds on 67(#), as 6(¢), in terms of (P, O ymr)-
Thus the bounds in the paper are applicable without determinism.

Let o7 € {t,0} and oy € {m, r,,?} represent the strategies for assigning the values of 7' and M, where
om = represents observation, oy =m represents that M is assigned a value m by randomization and
P(M|T,U, 0y =r»)=P(M|U,op =t*). It can be shown that 67(¢) is identifiable with the expression in
theorem 1 if

Ull(om,or), (12)

YUoylM,U,or=t, (13)

M or|T,U,oy, (14)
PY|U,opy=m,or=0—PY|U,opy=m,or=t)=g(t,t,U). (15)

The potential outcomes probabilities are invariant to the value assigned by randomization, by definition,
and the paper assumes that they are invariant under randomization or observation. This invariance is
no weaker than condition (12), which restricts the distribution of the individual characteristics U to be
invariant to the strategy for assigning 7 and M.

The notation Y;(t, m) in the paper assumes that, given 7 =t and M =m, the strategy for obtaining these
values is irrelevant (Cole and Frangakis, 2009). This notation is justified from assumption 3 and the stan-
dard implicit consistency assumptions Y;(¢) = Y;{t, M;(t)} and Y;{t, M;(t'),d} =Y;(t,m,d) if M;({')=m
Such assumptions are as strong as condition (13). The paper assumes further consistency by M; = M;(T;),
i.e., for an individual, the value of M when T =t is observed is the value of M when T =t is assigned by
randomization. This is no weaker than condition (14). Since condition (15) is a no-interaction assumption,
the conditions for identifying 6(¢) in the parallel design are as strong as those for identifying & (7). Similar
comments apply to other experimental designs.

Chen et al. (2007) showed that, under a zero direct effect, the causal effect of 7" on Y is not predictable
from the effect of 7 on M and M on Y. Conditions were given in Chen et al. (2007) to ensure that the
effect is predictable from the chain of effects. Perhaps similar criteria can be developed under a non-zero
direct effect and then used to develop tests to check the validity of the ‘causal chain” approach in Section 3.

Theis Lange (University of Copenhagen)

Firstly I congratulate the authors for an important and enjoyable paper; secondly I thank Professor Imai
for an inspiring presentation at the Society. On reading the paper I was left with two concerns or perhaps
more accurately wishes for future research.
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(a) In the parallel design we have replaced the (untestable) assumption of sequential ignorability
with an assumption of no-interaction at the unit level (which at least has testable implications).
However, for non-binary outcomes the no-interaction assumption is scale dependent. I fear that
it would often be difficult to argue for the validity of the no-interaction assumption by using only
subject matter knowledge, even when there are good subject matter arguments for a mechanistic
causal effect separation since such arguments are rarely scale specific. Thus, we have replaced a
structural assumption (namely sequential ignorability) with a purely technical assumption. Per-
haps future research can either remove this assumption or establish whether we are still estimating
something interesting when the no-interaction assumption fails.

(b) On the basis of the present paper it could be argued that for any new experiment aiming at quan-
tifying causal mechanisms one of the novel designs should (if at all possible) be employed simply
as a precautionary measure. However, before adopting this guideline it would be of great value to
know the price we are paying in terms of statistical uncertainty. Or, in other words, assuming that
both sequential ignorability and the no-interaction assumption hold, but we only have 100 study
subjects, are these 100 subjects then best ‘used’ in a single-experiment set-up or a parallel design in
terms of statistical uncertainty of the resulting estimators?

Andrew Gelman (Columbia University, New York)

This is an impressive paper that goes beyond philosophical argument and mathematical manipulation
and proposes specific designs to study real problems. Several of the proposed new studies seem fairly
inexpensive—e.g. the expanded survey experiment in Section 4.2.3 on attitudes towards immigration—
and I wonder whether the authors are considering performing these studies themselves or perhaps know
of others who have such plans. Often in political science and economics we need to wait for new data
(new elections; new revolutions; new economic or political trends), but these psychological studies can be
replicated fairly easily, and I am curious about the results.

I have two further questions, one applied and one methodological. My applied question is about the
effect of incumbency and money in US congressional elections. Unlike many causal questions in social
science, this one can be formulated cleanly: for incumbency, either an incumbent runs for re-election or
not. For money, if I give $100 to candidate X, what is the expected effect on his or her vote share in the
upcoming election? Also, whether an incumbent runs for re-election affects the campaign contributions
in his or her district. Although all these effects are clearly defined, studying them is tricky: incumbents’
decisions, results of primary elections and campaign donations are observational variables, as are the
aspects of their opponents in the general elections. There is a literature on the estimation of the effects
of incumbency and money on elections using various clever ideas with observational data and natural
experiments. I am wondering whether the methods described in the present paper can be applied in this
observational setting.

Finally, just as a minor comment: I hope in the future that the authors will think as hard about the
presentation of their results as they do about their mathematical foundations. For example, they estimate
a proportion as ‘0.730 for the treatment group and 0.392 for the control group’. Given that their sample
sizes are below 68 and 198 respectively, I think that third digit is meaningless. Similarly, they present a
confidence interval as [—0.175, 0.825]. Given the evident level of uncertainty, [—0.2, 0.8] would suffice. One
of the most important messages statisticians convey is about the presence of uncertainty, and we dilute
much of this when we display meaningless levels of precision.

Manabu Kuroki (Institute of Statistical Mathematics, Tokyo)

I congratulate the authors on this paper which tackles a difficult but interesting problem. I would like to
provide some comments on the present paper from the viewpoint of quality control (QC) which is one of
my main research fields.

Dr Genichi Taguchi, who was a pioneer of quality engineering, implied that the effect decomposition
problem is one important issue in experimental design (Taguchi (1987), chapter 28). However, he did not
provide any solution to this problem and this problem has not attracted much attention from QC exper-
imenters for a long time. In this sense, although the authors’ research area is different from that of Dr
Taguchi, the authors also shed light on the effect decomposition problem in experimental studies. Thus,
the present paper provides a new motivation for QC practitioners who deal with this problem.

The results of the present paper have some limitations when we apply them to the QC area:

(a) the assumption of no carry-over effects does not hold in many cases;
(b) the monotonicity assumption is often violated and
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(c) a main interest in QC is to evaluate direct and indirect effects in the whole population instead of a
subset of the population.

Despite these limitations, the present results may be applicable to, for example, an experimental study
to evaluate the effects in the case where we exchange components that may cause bad performance and
the deterioration of assemblies (or sequential systems). To overcome these limitations, as one solution,
the authors provided sharp bounds in some cases but they did not formulate bounds for encouragement
designs. It would be helpful if the authors can provide the formulation of sharp bounds for these designs
because sharp bounds often provide useful information on the evaluation of direct and indirect effects
(e.g. Cai et al. (2008)).

The following contributions were received in writing after the meeting.

Jeffrey M. Albert (Case Western Reserve University, Cleveland)

I commend the authors on a stimulating and clearly written paper, and one that is a welcome contribution
to the limited literature on study designs for the assessment of mediation. For brevity, and to cover the main
ideas, my comments are focused on the (two-part) parallel design (with direct or imperfect manipulation).

The two-part design has some appealing features. In particular, it clearly separates the goal of esti-
mating the overall treatment effect (which is provided by the first experiment) and that of estimating
direct and indirect effects (which are provided by the second experiment). However, because the second
experiment does not contribute to the estimation of the overall treatment effect (except possibly with
additional assumptions), an obvious drawback of the design proposed is the requirement of additional
resources for the estimation of mediation effects. It may be argued that researchers, or funding agencies,
should be willing to pay the price for this information. However, when resources are limited this may be
a difficult sell. In contrast, in the standard ‘single-experiment’ design, for which the primary objective is
usually inference for the overall treatment effect, mediation analysis is offered ‘for the same price’, albeit
with additional strong assumptions. Of course, low power for testing mediation effects may require a
boost in the sample size, but then inference for the overall treatment effect will also benefit. To allow a
complete evaluation, the power implications of the proposed versus standard designs could use further
investigation.

It is notable that, even with the additional investment that is represented by the two-part design, the
estimation of mediation effects still requires strong assumptions that are not assured by the randomization.
These assumptions include that of no (individual level) treatment-mediator interactions and the ‘consis-
tency assumption’ (assumptions 3 and 9). It is interesting that assumptions 3 and 4 (or 8 and 9) essentially
render the Z as an instrumental variable. The authors dismiss the instrumental variable approach; how-
ever, some generalized (e.g. two-stage least squares, extending Albert (2008)) approach may be possible
without having to assume no direct effect of 7 on Y (noting that multiple instrumental variables may be
obtained from the multiple-category Z). Unfortunately, the assumption of no direct effect of Z (aswell as T')
on Y may be implausible in many situations, in which cases it is not clear whether it is worth trading this
assumption for that of sequential ignorability.

John G. Bullock (Yale University, New Haven) and Donald P. Green (Columbia University, New York)
Imai, Tingley and Yamamoto remind us that an intervention’s ‘direct effect’ and ‘indirect effect’ are funda-
mentally unidentified. Both involve inherently unobservable potential outcomes. Not even a randomized
experiment can render an estimate of quantities such as E[Y;{t, M;(1 —1)}]. Yet they express optimism
about our ability to learn about direct and indirect effects by coupling experiments with an array of
supplementary assumptions. We applaud them for detailing the assumptions that are required to isolate
causal mechanisms. But, when reflecting on applications in the social sciences, we remain sceptical about
whether any experimental design will permit a researcher to estimate direct or indirect effects convincingly.

We are sceptical because the assumptions that are invoked by the authors are not directly testable: the
‘consistency assumption’ (assumption 3), the ‘no-interaction’ assumption (assumption 5) and the homo-
geneous unit effects assumption (on the eighth page). In practice, the list of assumptions in social science
applications is even longer. First, social scientists routinely study mediation by using variables, such as
beliefs or feelings, that are not observed directly. It is difficult to measure and manipulate a particular medi-
ator without inadvertently measuring and manipulating other mediators as well. Measurement challenges
are especially daunting given widespread reliance on survey measures; subjects are often invited to report
beliefs or feelings, and their responses are used to measure the mediator and the outcome. Systematic
response error that affects both mediator and outcome is a very real possibility.
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Second, rarely can social scientists set specific values of a mediator (i.e. M(7)). At best, they intervene by
using ‘encouragement’ designs like those which the authors discuss in Section 4. These designs force
researchers to invoke additional untestable assumptions: most notably, the ‘exclusion restriction’, which
says that encouragements affect outcomes solely through the intended mediator.

Few, if any, social science studies have satisfied or could convincingly satisfy these assumptions. Rather
than attempt to estimate parameters that are fundamentally unidentified, let us set our sights on the still
challenging task of estimating the causal effects of # and M. Even if we cannot know the indirect effect
of ¢, we can still learn about its effects on hypothesized mediators, and we can learn the average effect of
intervention-induced change in M on outcomes. The advantage of this approach is that it puts us on a
firm experimental footing. After we have accumulated substantial knowledge about the effects of ¢ and
M, identification of causal mechanisms may become more plausible.

Vanessa Didelez (University of Bristol)

The importance of experimental design for causal inference is twofold. It can guarantee crucial assump-
tions; for example actual randomization allows identification of average causal effects. A careful design
also clarifies, almost defines, the target of inference—this is especially relevant in the context of sometimes
woolly notions of ‘causal mechanisms’.

The authors consider indirect or direct effects involving Y {z, M(#')}. Setting treatment to ¢ and ¢ for
the same unit is genuinely counterfactual Consequently, although their designs improve on the single
experiment, they cannot avoid untestable assumptions. Furthermore, do the designs proposed define the
target of inference? The additional experiment in the parallel designs really targets the controlled direct
effect, and the two require linking by untestable assumption 5. However, the crossover designs proposed
clearly target Y{r, M(¢')}, and under untestable assumption 7 this comes close to observing Y{¢, M(')}
itself.

A different type of design is sometimes possible and clarifies the causal parameter in a decision theoretic
context (Didelez et al., 2006), namely when we can manipulate the mediator, without controlling it (almost)
as if treatment were at two different values for the same unit. For example double-blind placebo-controlled
studies: these target the direct effect of an active ingredient not mediated by the patient’s or doctor’s expec-
tation. Crucially the mediator (the expectations) is not (and cannot) itself be controlled, but the design
guarantees that it arises as under ‘drug taken’. One can easily think of variations addressing the indirect
effect, here the placebo effect. This type of design seems feasible whenever ‘treatment’ comprises different
aspects that could—with a little imagination—be separated out. Robins and Richardson (2010) used similar
examples and (possibly hypothetical) interventions in augmented directed acyclic graphs to discuss when
Y{t, M(¢')} can be regarded as a manipulable quantity. Does this mean that we observe Y{z, M(') } itself?
Not necessarily: the design fails when there are post-treatment confounders (even if observed) of M and
Y; in the placebo-controlled trial this is known as “‘unblinding’, e.g. by side effects of the active ingredient.

Looking at typical applications, it will be rare that crossover or placebo-type designs can be used. The
interest in causal parameters based on Y{t, M(¢')} therefore remains a mystery to me—what practical
questions does it help to answer that simpler approaches (causal chain or controlled effects) do not? If
effect modification is the main problem, we should maybe direct more attention to investigating effect
modification and design experiments accordingly.

David Draper (University of California, Santa Cruz)

The authors of this interesting paper have offered us some increased clarity on a difficult question: can we
go beyond estimating the average effects of causes to correct identification of the actual underlying causal
mechanisms? Their answer is a cautious yes, by employing designs they recommend that differ from those
in widespread current use; I am less sanguine, for at least the following two reasons.

(a) It is distressingly easy to imagine experiments in which the authors’ assumption 3, which they
correctly point out is crucial to their attempts at improved designs, does not hold. For example,
consider an experiment in which the dichotomous treatment variable is a form of talk therapy aimed
at behaviour modification to avoid out-of-wedlock pregnancy (T =1) or no such therapy (7 =0),
and the outcome variable is the number of sexual partners. To keep this example from being too
stereotypically gendered, imagine a world in which an effective male contraceptive pill is available,
and consider one of the authors’ designs in which use or non-use of this pill is the mediator to be
manipulated, on a cohort of young men. It is a brave (and foolhardy) assumption in this setting to
believe that a man who chooses to take the pill will behave identically to a man who is randomized
to the pill with respect to the number of sexual partners that he seeks.
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(b) Almost all the authors’ examples involve a single mediator, but what if (as will often be the case)
two or more mediators are active (i.e. highly relevant to correct causal conclusions, because of
strong correlations with the treatment and outcome variables) but you are aware of only one of
them, and therefore—using one of the authors’ designs—you manipulate only the one that you
know about? Then what looks to you like unexplained variability in the outcome may actually be
bias (arising from having manipulated only one mediator), and this will potentially distort your
causal conclusions.

A little more detail on the following point would also be helpful. The authors make frequent use of
the expectation operator, without saying what distribution the expectation is over: are we averaging over
the distribution yielding the randomization to experimental groups distribution (holding experimental
subjects constant, and attempting to generalize only to what the results would have been if they had ended
up in different groups), or the distribution that is implied by the usual (often unstated, and often untrue)
assumption that the subjects are like a random sample from the population to which we are actually trying
to generalize, or what?

Adam N. Glynn (Harvard University, Cambridge)

This paper provides a thorough investigation of potential solutions to a difficult problem. As the authors
note, much of this difficulty stems from the fact that, although designs with direct or indirect manipulation
of the mediator provide more information about the mediation effect, these designs also require that the
manipulation does not directly affect the outcome.

Interestingly, by clarifying these difficulties, this paper may lead researchers in non-experimental settings
to reconsider whether mediation is the question that they want to address. For example, in observational
studies of racial discrimination, the treatment could be conceptualized as the perception of race at the
time of application (instead of race defined at birth as in the example from Section 3.2.4). This allows
an applicant’s qualifications to be incorporated in the analysis as pretreatment variables, and mediation
analysis would not be necessary (see Greiner and Rubin (2011) for a discussion).

Asanother example, consider the conjecture known as the weak states mechanism—that natural resource
abundance (e.g. oil or diamonds) might reduce the incentive for a state to develop the bureaucratic capac-
ity that is necessary for taxation, and that this lack of state capacity might increase the likelihood of civil
conflict (Fearon and Laitin, 2003). One reason why we might want to study this mechanism is to anticipate
the effect of laws that would block the mediation effect (for example see the discussion of oil revenue
management laws in Humphreys (2005)). However, any such intervention might have its own direct effects
on the outcome and, therefore, the mediation effect may not necessarily represent the effect of interest.

It is unclear to me whether this paper will do more to encourage the use of good design or to dissuade
questionable (and possibly unnecessary) attempts at mediation analysis. In either case, the authors have
done a great service in clarifying the issues.

Booil Jo (Stanford University)

I congratulate the authors on their very important and stimulating contribution to the causal infer-
ence literature. Possibilities of manipulating mediators have been largely overlooked and, therefore, little
knowledge has been accumulated so far about design possibilities in identifying causal mechanisms. It may
seem that the proposed alternative experimental designs replace one untestable assumption with another
set of untestable assumptions (that could be even stronger). However, these alternative experimental de-
signs let us explore alternative identifying assumptions, the use of which is likely to improve the quality of
our causal inference. As the authors emphasized, when the single-experiment design is the only option, the
unavoidable choice of identifying assumption is sequential ignorability, which is not a desirable situation.
The use of alternative designs and identifying assumptions opens up possibilities for diverse and improved
sensitivity analysis strategies. Further, the authors demonstrated the use of encouragement, which not only
makes implementation of the designs suggested more feasible but also improves the testability of some of
the underlying identifying assumptions.

What seems somewhat unclear at this point is how the design strategies suggested will pan out in practice.
The designs proposed will generally require larger sample sizes. This may not be feasible in many stud-
ies that must rely on small to moderate sample sizes. For example, in many medical and health-related
experiments, recruiting a large sample is simply not feasible. The suggested parallel designs consist of two
experiments, which inevitably require larger sample sizes. Even if recruitment is possible, the increased
cost and practical issues that are related to having two experiments may discourage the use of the designs
suggested. The crossover designs seem less costly, but the no-carry-over effects and consistency assumption
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can be quite strong. To make this assumption more testable, a larger sample is again needed to maintain
the same level of statistical power (i.e. we need to include a group of individuals without mediator manip-
ulation). I also suspect that we shall need some guidelines on ethical issues related to manipulation of
mediators. Finally, I wonder how applicable the study designs suggested are. The examples that are used in
the paper (transcranial magnetic stimulation and immigration) seem quite unique, making me somewhat
unsure about the broad use of the designs suggested. I look forward to seeing more applications in diverse
settings. I congratulate the authors again and hope that that this paper will ignite further development of
creative and practical study designs to elucidate causal mechanisms.

David A. Kenny (University of Connecticut, Storrs)
The paper is in the now rather old tradition of finding ways of estimating causal mechanisms by combining
experimental and non-experimental approaches. I have three comments.

First, the authors’ approach is to estimate the indirect effect (IE) as the difference between the total effect
of T on Y and the direct effect of 7' on Y controlling for M. Such an approach is implicit in Baron and
Kenny (1986) and was formally described in Clogg et al. (1992). An alternative, less general, but currently
quite widely utilized, strategy for the estimation of IEs is to estimate the IE as the product of two effects:
the path from 7 to M or a and the path from M to Y or b. Where appropriate, knowing the sizes of @ and
b can be very informative. First, if the IE is near 0, it is useful to know whether path a or b (or both) is 0.
For instance, if path a is 0 but b is not, then we know that the intervention failed to trigger the mediator.
Second, the relative size of path @ and b can be informative. Some mediators are ‘proximal’ in that they
are closer to 7' (Hoyle and Kenny, 1999) whereas others are ‘distal’ in that they are closer to Y.

Second, I think it highly unlikely that one ever has a ‘pure’ manipulation of M and so the authors’
consideration of such seems misplaced. In the tradition of Cook and Campbell (1979), a measure or
manipulation is virtually never identical to the construct that it purports to measure. Moreover, mediators
are typically inside the ‘black box’, and so they can be difficult to observe directly. It should also be realized
that almost always the manipulation of 7T is one of ‘encouragement’, and so the use of encouragement is
not a poor second choice. Rather it is what is almost always done.

Third, in cases for which we can assume continuous M and Y, no TM interactions and linear effects, I
think that a single experiment can be undertaken in which both 7" and M are manipulated and measured.
In such situations, the IE could be measured as the product of two effects, ab. The single experiment would
yield a more precise estimate of the IE than the two-arm study proposed by the authors. The interested
reader can consult Smith (1982) for an instructive example.

Victor Leiva and Emilio Porcu (Universidad de Valparaiso)

This interesting paper deals with designs of randomized experiments to evaluate the treatment effect on a
response under causality, where the treatment effect is the sum of the causal mediation indirect (mediator)
and direct effects. Although the single design is one of the most commonly used methods for identifying
causality, it is based on assumptions that are difficult to justify in practice. The paper proposes parallel and
crossover experimental designs by means of which it is possible to manipulate the mediator that connects
the treatment and response. These designs are based on a key assumption that is the consistency, which
allows us to manipulate the mediator without directly affecting the response. These designs improve the
results from the single design.

Studies in diverse areas are usually causal and not associational. This makes standard statistical infer-
ence not suitable for these studies and so-called causal inference is needed instead. In general, because
studies in these areas are usually observational and not experimental, it is somewhat complicated to justify
parametric assumptions and so the use of semiparametric models seems to be more adequate. Indeed,
there are examples where to assume parametric models implicitly leads to models that exclude a priori the
null hypothesis of no causal effects; see Robins and Wasserman (1997). In spite or these difficulties, some
efforts on the use of parametric models in causal inference, including non-normal distributions, have been
made; see Shimizu and Kano (2008).

In parametric modelling, it is well known that outliers produce undesirable effects on the estimates of the
model parameters, influencing their behaviour. Then, it is important to have tools that allow us to assess
such influence. A method known as local influence provides us with an instrument to detect the effect of
small perturbations in the model on the parameter estimates; see, for example, Leiva ez al. (2007) and ref-
erences therein. Because the problem of influence could also be present in causal models, with similar con-
sequences, the idea of influence diagnostics could be explored in the class of models analysed in the paper.

Outcomes, mediators (such as ‘anxiety’) and direct effects can be accumulated in a similar way to
that generated by a fatigue process, which acts under stress. Then, the data-generating process could be
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well explained by a process of this kind and so a non-normal model, such as the Birnbaum-Saunders
distribution, might be considered in causal analyses of the type studied in the paper; see Leiva et al
(2007).

N. T. Longford (SNTL and Universitat Pompeu Fabra, Barcelona)

Statistical literature is replete with poorly founded claims of having identified causes and generated some
understanding of causal mechanisms. This paper is a commendable effort to add scientific rigour to the
discourse about causal mechanisms and to the design for studying them. However, the framework pre-
sented is not particularly constructive, because the numerous assumptions, although well motivated, are
presented in the form of imperatives—if a particular setting departs from a required assumption, the
edifice that is essential for the inference crumbles. The fact that some assumptions are unverifiable, or
even untestable, adds to the difficulties. A more constructive approach would define metrics for depar-
tures from the assumptions and allow for some form of arbitration about how great a deviation from the
assumption (the ideal) is permitted without undermining the inference about the causal mechanism. For
example, carry-over in a (clinical) crossover trial can rarely be regarded as absent (satisfying the relevant
null hypothesis Hp), because such an absence corresponds to an unsupportable H,. Failure to reject Hp
does not suffice here, even if we have ample evidence from elsewhere that the carry-over is sufficiently small
for a different purpose.

I think that the limitation of the presented methodology to very simple causal mechanisms is not made
clear. A unit (or link) of a causal mechanism is a direct cause without a mediator. All the examples discussed
are mechanisms comprising two units. In more realistic settings, there are many interrelated mediators,
and the framework presented would entail a large set of interrelated experiments and randomizations. For
example, in the study of attitudes to immigration, having been abroad, having contemplated living there,
having acquaintances among immigrants, having an occupation that involves international contacts, and
the influence of the (self-selected) media outlets are relevant factors, most of them beyond our ingenuity
and resources to manipulate. To study a causal mechanism (the verb ‘to identify’ is misleading because it
implies a verdict with certainty that cannot be arrived at by a hypothesis test on a finite sample), we must
have the ability to manipulate each mediator in a way that is described by the assumptions (extended to
settings with several mediators), and that is a rather tall order.

David P. MacKinnon (Arizona State University, Tempe)

Imai, Tingley and Yamamoto link experimental designs and modern causal inference, thereby clarifying
limitations about what experiments can demonstrate regarding a mediating mechanism. This important
work is applicable to the many areas where researchers seek understanding of how a manipulation affects
an outcome. I do not agree that the single-experiment design is how mediating mechanisms are identified.
The search for mediating mechanisms is addressed by a programme of experimental research, replication
studies, history and qualitative data, conducted by different researchers in different research contexts
(MacKinnon, 2008). It is unlikely that any one study, even the ideal experiment designs that are described
in the paper, would be sufficient to identify a mediating process (because of type II errors, for example). A
programme of research is also critical to deal with other considerations, such as the requirement of valid
and reliable measures, sample representation of the population of interest and selection of the position in
a chain of mediation to investigate.

Given the strong assumptions that are necessary for identifying mediating mechanisms, it would seem
surprising that mediating mechanisms can be found. However, research that is focused on predicted and
observed patterns of results in different contexts is how mediating processes have been identified in the past.
A few notable mediating mechanisms are atomic theory in chemistry, gene theory in genetics and cognitive
dissonance theory in social psychology. In the social sciences, several designs that are closely related to
those in the paper have been used to test logical predictions of mediation theory (Mark, 1986; MacKin-
non 2008; MacKinnon and Pirlott, 2010). In the social science literature, the parallel and encouragement
designs correspond to blockage and enhancement designs where additional conditions are specified that
should lead to larger or smaller effects on outcomes depending on whether the mediator was enhanced
or blocked. Also related are double-randomization designs whereby a manipulation is conducted and a
mediator and outcome measured, and then a second randomization addresses the mediator-to-outcome
link. Other designs attempt to demonstrate specificity for a mediation process by predicting mediation
through a hypothesized mediator and not through a comparison mediator. Useful future research would
clarify the causal assumptions of these additional designs, including methods to address the sensitivity
of conclusions to assumptions. Another valuable next step is the application of experimental designs to
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answer important substantive questions with real data that includes collaboration between substantive
researchers and statisticians.

Jorge Mateu (University Jaume I, Castellon), Oscar O. Melo (National University of Colombia, Bogotd)
and Carlos E. Melo (District University Francisco José be Caldas, Bogota)
Identifying causes is the goal of most scientific research. We can design research to create conditions that
are very comparable so that we can isolate the effect of the treatment on the dependent variable. In this way,
research designs that allow us to establish these criteria require careful planning, implementation and anal-
ysis. Many times, researchers must leave one or more of the criteria unmet and are left with some important
doubts about the validity of their causal conclusions, or they may even avoid making any causal assertions.
We would like to draw the authors’ attention to a particular problem that could benefit from this strat-
egy. To improve further on the crossover design, the results can be extended to models with the observed
pretreatment covariates X;. Then, the average indirect effect by using the same notation as the authors’ is
given by

o0 =E[Yn{t, M;(1)|X; =x} — E[Y {t, M;(0)| X; =x}]

fort=0, 1 and all x € x, and where M; € M denotes the observed value of the mediator that is realized after
the exposure to the treatment, M is the support of M; and the two potential values M;(0) and M;(1) are
the effects of the treatment over the mediator. During the second period of the experiment, the treatment
status is 1 — 7; for each unit, and the value of the mediator equals the observed mediator value from the
first period, M;. So, in the second period, the observed outcome can be written as Y, =Y, (1 — T;, M;| X;).
The following assumption is satisfied under the crossover design because the treatment is randomized:

{Ya(t,m), Y (t',m), My (t"):1',t"€(0,1),me M} LLT;|X;=x

for¢,# =0, 1. Additionally, Robins (2003) and Imai et al. (2010) considered the identification. In this case,
it should satisfy the following assumptions:

{v;(@,m), M;(n} 1L T;|X;=x and Y;(t',m) LL M;(0)|T; =t, X, =x,

where it is also assumed that 0 < P(T; =¢|X; =x) and 0 < P{M;(1)=m|T; =1, X;=x} for t=0, 1 and all
x € x and m € M. To this consistency assumption, the absence of carry-over effects can be also assumed,
ie.

E[Y:1{t, M; ()| X;}]=E[Yia (r,m| X})] if Mi()=m
fort=0,1 and all m e M.

Alessandra Mattei (University of Florence)

Imai, Tingley and Yamamoto provide a valuable contribution on a subject that is just as attractive as it
is challenging: understanding causal mechanisms. They focus on natural direct and indirect effects, which
are defined as a function of potential outcomes of the type Y;{s, M;(t')}, t' #1t, usually named ‘a priori
counterfactuals’, because they cannot be observed for any subset of units in a specific experiment.

To embed natural direct and indirect effects in the potential outcomes framework formally, the primitive
concepts and the basic assumptions for causal inference should be generalized to make potential outcomes
of the form Y;{z, M;(¢')},t #t, well-defined objects. Specifically, natural direct and indirect effects require
that the intermediate variable M could be, at least in principle, regarded as an additional treatment. There-
fore, assumptions on the compound assignment mechanism for the multivariate treatment variable (7,
M) should be contemplated.

The parallel and crossover (encouragement) designs that are proposed by the authors imply that (partial)
interventions on the intermediate variable are conceivable. My feeling is that, if we are willing to entertain
hypothetical interventions on the intermediate variable, it could be more reasonable to design a single
experiment posing a compound assignment mechanism for the treatment variable and the mediating or
encouragement variable: alternative causal paths could be investigated, and various hypotheses on the
causal mechanism could be assessed.

Another crucial issue concerns the assumptions of consistency and no carry-over effects, which allow
us to carry out extrapolation of a priori counterfactuals for units on which the data contain no or little
information, using data either across units for the same time or across time from the same unit. As the
authors also recognize, these assumptions may be controversial: the experiment to which a unit is assigned
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may make a difference, and also time may matter, implying that treatment comparisons across time lack
causal interpretation.

According to me, to understand clearly the nature of alternative identifying assumptions and to obtain
useful insights on how to design experiments aiming at disclosing causal mechanisms, preliminary analyses
based on the principal stratification framework could be valuable. A principal stratification analysis natu-
rally provides information on the extent to which a causal effect of the treatment on the primary outcome
occurs together with a causal effect of the treatment on the intermediate outcome, without involving a
priori counterfactuals and identification and estimation strategies based on extrapolation methods.

Emilio Porcu and Victor Leiva (Universidad de Valparaiso)

The paper deals with parallel and crossover designs as an alternative to the single design, which are useful
when the mediator that connects the treatment and outcome may be manipulated. The difference between
these two designs is that experimental units are assigned to one of two treatments at random (parallel)
or sequentially assigned to two treatments (crossover) by using the manipulation of the causal mediator.
These experimental designs are based on the consistency assumption, which supposes that the manipula-
tion of the mediator does not directly affect the outcome. By means of an example analysed in the paper,
the effect of media framing on the subjects’ immigration preference is tested, using the anxiety as mediator.
Because the manipulation of the anxiety is imperfect, the parallel design is used, turning out to be more
informative than the single design.

T. S. Richardson (University of Washington, Seattle) and J. M. Robins (Harvard School of Public
Health, Boston)
This is a thought-provoking paper that proposes several new approaches to probing mediation. It is an
attractive feature of the authors’ designs that their analyses are based on counterfactual independences
that hold as a consequence of randomization.

In the context of a single-intervention study where 7 alone is randomized, in several references, the
following independence assumptions have been entertained on the basis of substantive hypotheses:

T1LY(t,m), M(t), (16)
and
M@ 1LY (r,m)|T =1, 17

for all r, m € {0, 1}. We have computed bounds on the average pure (or natural) direct effect (here E[¢;(0)];
see expression (3) in the main text) under these assumptions (Robins and Richardson (2011), appendix C).
In the above expressions we have implicitly assumed there is a particular well-defined joint intervention
that sets M tomand T to ¢.

Note that expression (16) follows from the assumption that 7" was randomized. By contrast, assumption
(17) will hold in contexts in which there is no confounding between M and Y.

In situations in which it is possible to carry out the aforementioned joint intervention, we may verify
assumption (17) by conducting a subsequent study in which both 7" and M are randomized, in the manner
of the parallel design proposed by the authors. In this setting, there is a consistent test of assumption (17),
i.e. it is, in principle, verifiable. Specifically, we may contrast the conditional distributions P{Y; = y|M; =
m,T;=t,D;=0) and P(Y;=y|M;=m,T;=t,D; =1) that result from the two experiments. When these
distributions agree assumption (17) holds in the study where 7 alone is randomized (i.e. conditional on
D; =0). In this case the bounds (see expressions (8) and (9) in the main text) obtained by the authors for
6(1) imply bounds on F[(;(0)] that agree with those that we have obtained. As stressed by the authors, in
the absence of the consistency assumption 3, the second experiment provides no information concerning
the potential outcomes in the first experiment.

In contrast, no consistent test exists for the ‘cross-world’ counterfactual independence:

M@LLY(, m)|T =1, (18)

even if we are willing to make assumption 3 and can carry out the parallel design. Note that expression
(18) is required to obtain point identification of E[(;(0)] via Pearl’s mediation formula.

More generally, Robins (1986) and Robins and Richardson (2011) gave a general framework for formu-
lating causal models under which all counterfactual independence restrictions are in principle subject to
experimental verification in the way that is outlined here.
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Donald B. Rubin (Harvard University, Cambridge)

Imai, Tingley and Yamamoto are to be congratulated for addressing the challenging issue of direct or
indirect causal effects using potential outcomes, a notation that was introduced by Neyman in 1923 (see
Neyman (1990)) for repeated sampling, randomization-based inference in randomized experiments, and
extended in Rubin (1974, 1975, 1977, 1978) to include general assignment mechanisms for treatments
and other forms of inference. The condition for the notation’s adequacy (e.g. discussed in Rubin (1978),
pages 37-38) was eventually called the ‘stable unit treatment value assumption’ (Rubin (1980), page 591)—
meaning that, no matter how the ith unit, i=1,..., N, was exposed to treatment level ¢, t=1,..., T, the
outcome Y;(f) would be realized, where this could be a probability distribution (Rubin (2010), page 40);
potential outcomes are functions of units and treatments at defined times of assignment of treatments and
measurement of outcomes.

One component of the stable unit treatment value assumption is ‘no interference’—explicit in this paper,
but only implicit is the second component, ‘no hidden versions of treatments’ meaning that there are no
levels other than those reflected in {1, ..., T'}, i.e. no levels that could lead to values of potential outcomes
that are not represented in {Y;(¢),i=1,...,N;r=1,..., T}. With the authors’ notation indexing Y out-
comes by treatments and mediators, the stable unit treatment value assumption implies that, given a fixed
treatment level, say #, no matter how we force the mediator M to change its value for unit i from M;(¢) to
another value, M* # M;(f), the outcome Y;(t, M*) would remain the same, which, if implausible for any
i, makes the stable unit treatment value assumption implausible and thereby makes Y;(z, M*) functionally
ill defined because of its multiple values and thus makes estimands based on the notation ill defined, as
argued in Rubin (1975), page 234, Rubin (1986) and Rubin (2010), pages 40-41.

To make the stable unit treatment value assumption plausible in this case, the essential conceptual
task is to formulate an assignment mechanism, not only for treatment levels, but also for mediator levels
given each treatment level (Mealli and Rubin, 2003), typically either ignorable (Rubin, 1978) or latently
ignorable (Frangakis and Rubin, 1999); the former relies on apposite covariates—as in Nedelman et al.
(2003); the latter typically relies also on principal stratification (Frangakis and Rubin, 2002)—as in Jin
and Rubin (2008). Ill-defined notation and the jargon of direct and indirect effects distracts us from this
essential, problem-specific, conceptual task—revealed by Fisher’s using such jargon to justify covariance
adjustment for observed values of mediators without consideration of assignment mechanisms for them
(Rubin (2005), section 7).

Marc Saez (University of Girona, and Consortium for Biomedical Research Network in Epidemiology

and Public Health, Barcelona)

I congratulate the authors for their splendid work. I think that they contribute in an important way to inves-
tigating the explanation of causal rnechanisms. However, I am not very sure that they have succeeded,
indeed, in identifying causal mechanisms. Although the theoretical argument of the two experimental
designs that they propose is impeccable, the examples they provide (i.e. Sections 4.1.3 and 4.2.3) do not
satisfy the same consistency assumption that is unfulfilled by the parallel and crossover designs, namely
that experimental subjects need to be kept unaware of the manipulation. Of course, this does not necessarily
mean that the generalization of the parallel and crossover designs by allowing for imperfect manipula-
tion does not help to identify, effectively, average natural indirect effects but, perhaps, the choice of the
examples was not successful. So I would like to ask the authors to show an example with, maybe, fewer
assumptions. In any case, I think that the authors have contributed in an excellent way to establishing
the theoretical foundations of the identification of causal mechanisms, particularly when it is perfectly
possible to manipulate an intermediate variable.

Michael E. Sobel (Columbia University, New York)

I congratulate Imai, Tingley and Yamamoto for proposing creative experimental designs to help to iden-
tify pure direct and indirect effects. This is challenging because there are no observations Y;{t, M;(¢')}
(i denotes subject, T =t denotes assignment to treatment z and M;(¢’) is the mediator when ¢ #+¢'), yet one
must identify E[Y{¢, M(¢)}]. Identifying sequential ignorability assumptions (several are referenced in the
paper) have been given, but these are typically substantively unreasonable. The authors avoid these in the
parallel design by adding to the usual ‘single-experiment design’ a second experiment with both treatment
assignment and the mediator randomized, thereby identifying controlled effects E{Y(t,m) — Y(¢',m’)}.
Still, additional assumptions are needed to identify pure direct and indirect effects; the authors assume
no interaction at the unit level. This is also very strong, and often not credible. They acknowledge this,
developing sharp bounds for the parallel design that hold without this assumption. Their modified cross-
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over design is nice, and the assumptions, although strong, seem more possible to meet. Similar remarks
apply to the encouragement versions.

Direct and indirect effects reflect processes involving causation, providing useful information about the
role of the mediator in the relationship between treatment assignment and response. But even leaving aside
how one might, in the spirit of this paper, define and formalize the notion of a causal mechanism, and what
it would mean to have a probabilistic causal mechanism (or should it be causal probabilistic mechanism?),
it is useful to recognize that identification and estimation of direct and indirect effects need not reveal
much about a causal process at work.

Consider the following hypothetical, deliberately oversimplified example. Suppose that there is a func-
tion g(x, t,m), where possibly g(x,t,m) =g(x,t,m’) for every (x,7) and (m,m’), such that Y;{r, M;(1)} =
g{xi, t, M;(1)} M;(¢) and Y;{r, M; (')} = g{x;, t, M;(t') } M;(¢') The indirect and direct effects are respectively

E[Y{l, M)} = Y{1,M(0)}]=E[g{X, 1, M(1)} M(1) — g{X, 1, M(0)} M(0)], (19

Suppose that the authors’ crossover experiment can be used to identify these effects. We can then obtain
good estimates of these, with little knowledge of mechanisms: we do not know how g and M combine,
nor the causal relationship between g and M, nor even that there is such a g.

The example suggests the difficulty, using even the improved experimental designs in the paper, of learn-
ing about causal mechanisms. Unless the science is already strong, it may prove very difficult to do so.
That said, Imai, Tingley and Yamamoto have made a very nice contribution, and certainly a step in the
right direction.

Tyler J. VanderWeele (Harvard University, Cambridge) and Richard A. Emsley (University of Manchester)
Imai, Tingley and Yamamoto are to be congratulated for fine methodologic work which has provided
experimental designs and theoretical results that together allow researchers at least sometimes to identify
the sign of a mediated effect without any assumptions beyond so-called ‘consistency’ (see VanderWeele
and Vansteelandt (2009) and VanderWeele (2012)), contrasting with prior work on bounds (Sjélander,
2009; Kaufman et al., 2009; Robins and Richardson, 2010). They achieve these results by relying on fairly
complex experimental designs such as when two trials are run, one in which treatment is randomized and
another in which both treatment and mediator are randomized or alternatively trials in which it is possible
to re-randomize, without carry-over, both treatment and mediator.

Although their designs have considerable identification power, they would, in many settings, be difficult
to implement in practice. There is a trade-off between the complexity and practicality of the design on
the one hand and strength of assumptions that must be employed to assess mediated effects on the other.
A more common setting than the designs that they have considered is one in which treatment has been
randomized in one trial, and the mediator has been randomized in another trial, possibly even with a
different population from that of the first trial. The effect of treatment on the mediator and the outcome
can be assessed in the first trial; the effect of the mediator on the outcome can be assessed in the second.
Such designs lack the identification power of those considered by the authors and must make additional
assumptions such as no interaction in expectation, cross-world independence and transportability when
two different populations are used in the two experiments. But such designs would be easier to implement
in practice and could even make use of existing trials and published data. We have been developing meth-
ods for such settings elsewhere (Emsley and VanderWeele, 2012). Although these methods do not allow
for the identification of mediated effects without very strong assumptions, they can be useful in informing
sensitivity analyses for these mediated effects. Such an approach constitutes an intermediate between the
extremes of merely relying on observational studies and sensitivity analysis (Imai ez al., 2010; VanderWeele,
2010) or alternatively employing the complex experimental designs that were presented in the paper under
discussion. However, when the parallel and crossover designs described by Imai, Tingley and Yamamoto
are possible to implement, they clearly constitute a superior and more rigorous approach to assessing
causal mechanisms.

The authors replied later, in writing, as follows.

We begin by thanking a total of more than 25 scholars from various disciplines for their valuable contribu-
tions. The fact that such a large number of contributions have been submitted reflects the interdisciplinary
importance and challenges of identifying causal mechanisms. Given the limited space, we shall focus on
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several common themes and reserve for future occasions our specific responses to the other points raised
by each discussant.

Should scientists conduct causal mediation analysis?

Some discussants believe that the efforts to improve the credibility of causal mediation analysis may not
be so worthwhile. There appear to be two main reasons for this scepticism: one fundamental and the other
more practical. The fundamental criticism is that our primary estimand, the average causal mediation
effect (ACME), is of limited scientific value and thus we should instead focus on some other quantity.
Some contributors (e.g. Didelez and Egleston) propose as an alternative the average controlled direct
effect (ACDE), defined as E{Y;(r,m) — Y;(¢r,m’)}. Others (e.g. Mealli and Rubin) argue for the principal
strata direct effect (PSDE), such as the dissociative effect E[Y;{r, M;(0)} — Y;{t', M;(¢') }| M; (1) = M;(')].

As explained in our paper, the ACDE represents the effect of manipulating both the treatment and
the mediator to specific values and thus is not directly informative of the causal process through which
the treatment affects the outcome. In contrast, the ACME formalizes the notion of a causal process by
considering the counterfactual outcome values which would realize when the mediators were changed as
they naturally would in response to the treatment. Putting aside the terminological issue of what should
be labelled a ‘causal mechanism’ (e.g. Sobel), scientists across disciplines very often aim to learn about
causal processes. This is because scientists care not only about changing the world by means of external
intervention, but also about understanding the way that the world works.

In the job market discrimination example that is discussed in our paper, social scientists are often inter-
ested in uncovering the causal process which leads an African American applicant to fewer job opportuni-
ties. Their goal is to understand the actual corporate hiring practices in the hope that such understanding
will shed light on the nature of discriminatory behaviour in a society and more generally among human
beings. Does discrimination arise from the perceived difference in qualifications between black and white
applicants, or from the fact that the applicant is black? This is a descriptive (rather than prescriptive)
causal question that can be most directly answered by quantifying the natural causal process.

In contrast, the PSDE represents the average treatment effects on the outcome among the units of specific
latent characteristics defined by the potential values of the mediator. It is argued that the PSDE is pref-
erable because the ACME is an ‘a priori counterfactual’ quantity. It is argued that the PSDE avoids such
pure counterfactuals yet still conveys some information about the causal mechanism of interest, because
a non-zero dissociative effect implies the existence of causal pathways other than through M at least for a
certain subpopulation. In our view, the conceptual difference between statements such as Y;{r, M;(#') } and
M;(t) = M;(t') is less fundamental, since both are unobservable (as pointed out by Berzuini). Instead, we
argue that the direct correspondence between the ACME and the concept of a causal process provides a
sufficient ground for investigating this quantity. In fact, for a subpopulation with M;(f) = M;(¢'), the average
dissociative effect equals the average (natural) direct effect (i.e. the difference between the average treat-
ment effect and the ACME). This close connection between the ACME and the dissociative effect makes it
possible for the researcher to learn about causal processes from the PSDE (see also VanderWeele (2008)).

Of course, we do not imply that other causal quantities such as the ACDE and PSDE are of little
value to scientists. In the above example, the ACDE will be more useful than the ACME if the researcher
is interested in the question of whether a policy intervention to improve the qualifications of minority
applicants, say through a job training programme, increases their employment prospects. We emphasize
that the experimental designs that are proposed in our paper all nest the standard experiment in which only
the treatment is randomized, and the parallel design in particular can point-identify the ACDE without
additional untestable assumptions. Moreover, the ‘augmented design’ that has recently been proposed by
Mattei and Mealli (2011) for the estimation of the PSDE is also nested in our parallel encouragement
design. Therefore, the designs that are proposed in our paper simply expand the realm of possibility for
experimental investigations into causal mechanisms. In fact, no opportunity will be lost by adopting one
of our designs instead of simply conducting a standard single experiment (except the loss of statistical
power, which may be an important concern in some situations as pointed out by Albert, Jo and Lange).

In the end, we believe that scientists should ultimately determine their causal quantity of interest in light
of the specific applied problems they face. In our view, the job of statisticians in causal investigations are
twofold:

(a) to clarify the assumptions that are required for the identification of the causal quantities that
scientists wish to estimate, and

(b) to devise new methodological tools such as alternative designs and estimation techniques that help
scientists to infer these quantities from the observed data better.
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The choice of causal quantities should depend on the particular scientific questions being asked. It is clear
that scientists are often interested in the examination of causal processes, and the ACME addresses this
question most directly.

The second, more practical argument against causal mediation analysis is that, even if the ACME is
of scientific interest, scientists should refrain from studying it because the identification of the ACME
requires untestable assumptions, which may be difficult to justify in many applied research settings
(e.g. Bullock and Green, Didelez, Draper and Glynn). In particular, concerns are raised about the plau-
sibility of the assumptions such as consistency and the exclusion restriction. Although these assumptions
should be taken seriously in applied research, we argue that the difficulty of causal mediation analysis
should not be the sole reason to deter statisticians from working on related methodological problems.
Typical applied research, especially in medical and social sciences, invokes several untestable assumptions.
For example, the use of the instrumental variables method is usually accompanied by the assumptions of
monotonicity and exclusion restriction. Even in randomized experiments, the consistency assumption (i.e.
the stable unit treatment value assumption) may not be entirely valid. These concerns should not imply
that empirical findings based on such assumptions are to be completely discredited. If such a perspective is
applied, there will be very few valid studies left in many of the disciplines in the social and medical sciences!

A more constructive approach would be to confront these methodological challenges directly. In general,
there are at least two ways in which statisticians can help scientists in this regard. First, the lack of point
identification does not necessarily imply the absence of information about the ACME. As we demonstrate
in the paper, the sharp bounds on the ACME can be derived to quantify precisely how much one can learn
from the observed data without untestable assumptions. Indeed, some of the contributors (e.g. Ramsahai,
Richardson and Robins) have taken this approach in their contributions and others have applied it in other
contexts (e.g. Manski (2007)). Second, sensitivity analysis can be conducted to investigate how robust one’s
empirical findings are to the potential violations of such assumptions (e.g. Longford). Although we did
not discuss them in our paper, several sensitivity analysis methods have already been developed for causal
mediation analysis under the standard experimental design (e.g. Imai, Keele and Tingley (2010), Imai,
Keele and Yamamoto (2010), VanderWeele (2010) and Tchetgen Tchetgen and Shpitser (2011)) and for
some of the designs proposed in our paper (Imai and Yamamoto, 2012).

Open methodological issues and future research agenda

The methodological literature on causal mediation analysis has evolved rapidly over the last decade and
we expect this trend to continue. Many of the contributors who accept the importance of causal mediation
analysis suggest open methodological issues. We outline these and other challenges here in the hope that
they guide future methodological research.

First, the main message of our paper is to draw attention to the ‘design-based approach’ to causal media-
tion analysis. Whereas prior research focused on various statistical methods under the standard experiment
design, relatively little attention has been paid to the question of how to design randomized experiments
differently to conduct causal mediation analysis with more credible assumptions. We hope that future
research extends our work and develops alternative designs. Several contributors to this discussion appear
to have already been moving in this direction by considering the use of covariates and other information
(e.g. Albert, VanderWeele and Emsley, Hong, MacKinnon, Mateu and his colleagues and Saez; see also
Section 3.1.2 of our paper). We look forward to seeing these new ideas in print. These new experimental
designs are also important because they naturally serve as templates for observational studies. In Imai
et al. (2011), we describe a couple of empirical studies in political science where the researchers analyse the
observational study analogue of the crossover design that is proposed in our paper. These studies focus on
the estimation of incumbency advantage, a topic which is mentioned by one of our contributors (Gelman).

Second, another important area of future research concerns multiple mediators because applied
researchers are often interested in investigating the relative importance of one mediator over another (e.g.
Longford). The key idea behind the proposed experimental designs is to side-step this issue by manipulating
one specific mediator of interest. However, as some contributors pointed out, in practice manipulating
one mechanism in isolation may be difficult, leading to the situation where multiple mediators are affected
by an intervention. For this reason, it is critical to develop statistical methods that directly deal with the
presence of multiple mediators. For example, Albert and Nelson (2011) discussed model-based estimation
strategies for path-specific effects in the presence of multiple mediators. In Imai and Yamamoto (2012),
we develop semiparametric linear models and sensitivity analyses for the potential violation of required
identification assumptions concerning multiple mediators.

Third, there may be alternative approaches to causal mechanisms that are quite different from what
is discussed in our paper. Some contributors mention the use of a decision theoretic framework (e.g.
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Berzuini and Ramsahai). Another approach is based on the identification of sufficient causes, which is
briefly discussed in our paper. These alternative approaches may shed new light on key methodological
issues. For example, in his discussion, Ramsahai shows how to relax the deterministic assumptions that
are made in our paper and examines the effects of doing so on the identification power of the designs
proposed.

Finally, we conclude our discussion by emphasizing the importance of close collaboration between
statisticians and applied researchers. As George Box succinctly put it, ‘the business of the statistician is to
catalyze the scientific learning process’. Any study of causal mechanisms will be best designed by taking
into account specific aspects of scientific theories under investigation. Although the experimental designs
that are proposed in our paper may serve as a starting point, we believe that in many situations they must be
modified to address directly the methodological challenges that are faced by the researcher. In particular,
practical difficulties of causal mediation analysis can be overcome by technological advances (as in the
neuroscience example in our paper) and creativity on the part of the researcher (as in the labour market
discrimination example). Some contributors discussed potential applications and specific challenges that
range from medicine and social sciences to engineering (e.g. Egleston, Gelman, Leiva and Porcu, and
Kuroki).

The challenges of causal mediation analysis should therefore motivate, rather than discourage, scientists
and statisticians who are working on this important problem. For many statisticians, the mantra ‘No cau-
sation without manipulation’, which was put forth by Holland (1986) more than two decades ago, has been
a starting point of causal analysis. Although we agree on the fundamental importance of manipulation
in any causal analysis, this mantra should not be taken as a commandment that forbids certain scientific
inquiry. Recently, Judea Pearl proposed another mantra ‘Causation precedes manipulation’. This reminds
us that manipulation is merely a tool that is used by scientists to identify causal quantities of interest. It
is clear to us, and hopefully to readers, that statisticians should no longer be passively analysing the data
collected by applied researchers. Rather, they must understand the causal mechanisms that are specified
by scientific theories and work together with applied researchers to devise an optimal design for testing
them.
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