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Cycle Office
All

Candidates

Candidates with

YT Channels

Duration
Total

15s 30s 60s

2012

President 2 2 (100.0%) 40 263 97 400

House 317 242 (76.3%) 39 986 198 1223

Senate 64 48 (75.0%) 16 519 146 681

Governor 25 20 (80.0%) 15 143 36 194

2014

House 250 191 (76.4%) 53 804 173 1030

Senate 66 52 (78.8%) 57 714 202 973

Governor 86 58 (67.4%) 70 636 170 876

Total 810 613 (75.7%) 290 4065 1022 5377

Table S1.1: Summary of Channels and Video Files Found at YouTube. The table presents the

number of candidates for each office listed in the Wesleyan Media Project (WMP) data, the number

and percentage of these candidates for whom we found YouTube (YT) channels, and the number

of downloaded video files from the said candidates (different types based on their length). Note

that not all of the downloaded videos are campaign TV advertisements.

S1 YouTube Coverage

Table S1.1 summarizes the channels and video files found at YouTube using the procedure described

in the main text. We find that approximately 75% of the general election candidates listed in the

WMP data have official YouTube channels. In addition, a greater proportion of House candidates

have YouTube channels than the Senate and Gubernatorial candidates. Lastly, we found a total

of several thousand video files that have approximately the same lengths as those of campaign TV

advertisement videos. The majority of video files are 30 seconds long.

A potential concern about using YouTube as the data source is its insufficient coverage. Al-

though a majority of general election candidates set up and actively operate YouTube channels

during their election bids (see Table S1.1), there still are a significant number of those who do not.

In addition, some politicians decide to close down their channel or take down some or all of the

previous campaign TV ads after the conclusion of the election. While missingness is likely a minor

issue in the context of our analysis, we note that the performance of our algorithm as reported in

this paper may not generalize to all videos in the 2012 and 2014 elections cycles.

Although we found official YouTube channels for about 75% of all general election candidates

in the WMP data set, after removing the YouTube video files we were unable to match with any

CMAG video, the proportion of the candidates who have at least one matched video file is reduced

to approximately 65%. The coverage rate has generally improved from 2012 to 2014, except for

gubernatorial elections, suggesting that the coverage may continue to improve over time as more

political campaigns start using YouTube as a way to reach voters.

S2 Spectral Fingerprinting

The spectrogram is a two-dimensional representation of the frequency content of the signal as it

varies with time. This frequency representation of the signal provides important information as to
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Figure S2.1: System Diagram for Computing the Spectrogram. The diagram illustrates the process

of computing the spectrogram for a 0.5 second segment of audio for one of the campaign videos

in our validation dataset. The signal is first partitioned into segments of length 0.3712 seconds,

spaced apart by 11.6 milliseconds (ms), resulting in a collection of N frames, shown in the box

labeled “Segmentation.” Each segment is then multiplied by a Hann window to produce a smoothed

waveform, as shown in the “Windowing” box. Finally, in the last box the magnitude spectrum is

computed via a fast Fourier transform (FFT) followed by an absolute value (ABS). The magnitude

spectrum for frame j corresponds to row j in the spectrogram and is denoted as Sj .

the perceptual qualities (i.e., tempo, timbre, pitch, etc.) of the audio track. For each unit of time in

the spectrogram (also called a frame), we summarize the frequency content using a 32-bit unsigned

integer derived from the frequency distribution and call the resulting vector the fingerprint. Each

element of this vector is called the sub-fingerprint.

Figure S2.1 illustrates the entire process, and we begin with a brief introduction to audio signal

processing. The audio we hear in a video is a continuous waveform that propagates through the

air as a compression wave, vibrating the air molecules around our ears, which creates the sound.
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These compression waves are generated from the vibration of speakers in our sound device, with

the pattern for the speaker vibration dictated by a continuous electrical signal, called the analog

signal. Since the video files cannot store all the values of the continuous analog signal, a discretized

approximation is used by sampling the desired continuous waveform at fixed intervals of time, where

the number of samples obtained per second of audio is called the sampling rate. For the matching

procedure, we used digital audio signals from the videos with a sampling rate of 5 kHz, implying

that for every one second of audio, we obtain 5,000 equally-spaced samples. A more detailed

introduction on digital signal processing can be found in Oppenheim, Willsky and Nawab (1996).

Formally, given a digital audio signal x[l] consisting of L samples, where L is determined by

the duration of the audio file, the spectrogram is computed by first splitting the audio signal

into overlapping segments, each of which has a length of W = 1, 856 samples, corresponding to

duration 0.3712 (= W/5000) seconds. We use short-duration segments because the frequency

content of audio signals varies quickly over time. For example, music typically consists of several

different instruments playing a sequence of notes in rapid succession. Splitting the full signal into

smaller segments allows us to better isolate the individual instruments and notes, allowing us to

better characterize the short-term variations of the audio signal.

We use an overlap factor of 31/32, meaning that consecutive segments share 31/32 of the same

samples. Hence, the temporal spacing between the first sample of each consecutive segment is

11.6ms = 0.3712/32. The reason we use a large overlap factor is that it helps with the matching

procedure, as we explain later. Each frame is then multiplied by a Hann window to reduce high

frequency noise introduced due to the segmentation (Harris, 1978). Finally, we compute the one-

sided magnitude spectrum for each frame by taking the absolute value of the 2048-point fast Fourier

transform (FFT) of the input frame. This yields a spectrogram S ∈ RN×K , with element S(n, k)

corresponding to the magnitude of frequency component k in frame n. Note that the number of

frequency bins K is fixed to 1025 for all fingerprints, while the time length N varies with the

duration of the audio signal.

To reduce the dimensionality of frequency, we partition the resulting spectrogram into M = 33

non-overlapping, logarithmically-spaced frequency bands covering the frequency range 300Hz to

2,000Hz. Within each band m, we compute the energy, defined as

E(n,m) =

Km∑
k=1

S(n, k)2,

where Km is the number of frequency bins. This step yields a matrix of energy values for each fre-

quency band and spectrogram time segment. We then produce a binarized matrix B ∈ RN−1×M−1

through the following rule,

B(n,m) =

{
1 if E(n+ 1,m)− E(n+ 1,m+ 1)− (E(n,m)− E(n,m+ 1)) > 0

0 if E(n+ 1,m)− E(n+ 1,m+ 1)− (E(n,m)− E(n,m+ 1)) ≤ 0
, (S1)

which indicates the sign of energy differences between adjacent bands and frames. Since there are

33 frequency bands, this procedure results in a 32-element binary array for each n ∈ {1, . . . , N−1}.
We convert these binary arrays into 32-bit unsigned integers and call the resulting vector F the

fingerprint, with each element of the vector called the sub-fingerprint.
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S3 Audio Matching Procedure

Matching was done in several steps. Here is a brief summary. We first generate a list of candidate

matches for the unidentified video using a hash table to find videos in the database which contain

the same sub-fingerprints as the unlabeled video. Then, for each candidate, we compute the

bit error rate (BER) between the unmatched fingerprint for the middle eight seconds of a given

video and that of the candidate fingerprint, which equals the average number of binary digits that

differ between the two fingerprints. Largely following Haitsma and Kalker (2002), we declare the

candidate fingerprint to be a match to the CMAG video if the BER was below a threshold of 0.35.

If the candidate was not a match, we repeat this process for the next candidate until a match is

found or all candidates have been exhausted. The two videos also have to fall in the same length

range to be declared as matches.

We now explain each step in more detail. For each YouTube video, we compute the spectral

fingerprints for the full-duration of all of the downloaded YouTube videos, producing a lookup

table (LUT) of fingerprints to be used to match the CMAG videos to. The hash values in the LUT

represent the sub-fingerprints while the values stored are the ID of the file and the index in the full

fingerprint where the sub-fingerprint occurs. Note that because the videos have varying lengths,

the spectral fingerprints will have varying lengths as well. For each unmatched CMAG video, we

then compute the spectral fingerprint of the middle 12-second segment of the unmatched CMAG

audio track and attempt to find its matching fingerprint in the YouTube video database.

There are several reasons why the duration input audio signal to the spectral fingerprinting

process is fixed to 12 seconds. First, the entire clip is not needed to find a match, so using a

shorter segment leads to significant computational performance. Second, many of the CMAG

videos were improperly recorded and often contain extra silence or portions of other ads at the

boundaries of file (the end or the beginning), so using the entire audio file would lead to false

negatives in the matching process because, technically, the audio files contained different content.

Third, while shorter duration could be used to effectively match videos, we found that some of

the ads in the CMAG dataset had some segments that were identical to one another, while other

segments were different. By using longer duration clips for matching, we reduce the probability of

false positives.

Since the sub-fingerprints are computed at discrete intervals of time, there is no guarantee

that segments obtained in the fingerprinting process of the truncated audio correspond to the

same segments in its matching file in the YouTube database. We see now that the purpose of the

large overlap factor is mitigate issues with spectrogram frame boundary misalignment between the

CMAG video and the YouTube database video in the fingerprinting process. Since the spacing be-

tween frames is so small, the sub-fingerprints for the unmatched video should be very similar to the

sub-fingerprints of its corresponding match in the database, even under worst-case misalignment.

Figure S3.2 shows the layout for the fingerprint database we use for matching. We will refer

to this figure throughout this section as we explain the procedure for matching. Denote Funk

as the fingerprint we are trying to match, recalling that a fingerprint is an N -dimensional array

of 32-bit unsigned integers, where N is determined by the length of the unmatched audio clip.1

Also define Funk(i) as the ith sub-fingerprint, depicted by the small rectangles containing integers

1For a 12-second clip, N = 1035.
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Figure S3.2: Diagram for fingerprint database structure and how candidates are chosen for the

unmatched fingerprint. The small rectangles containing integers correspond to sub-fingerprints,

while the small rectangles containing the (Song ID, Offset) tuples correspond to the values stored

in the database. This figure is a modified version of Figure 6 in (Haitsma and Kalker, 2002).

in Figure S3.2. Finding the corresponding match to Funk is an iterative procedure. For each

sub-fingerprint Funk(i), we perform the following steps:

1. Generate a list of candidate matches using the current sub-fingerprint Funk(i). We extract

the list of C tuples {(SongIDj ,Offsetj)}Cj=1 corresponding to Funk(i) in the LUT. Each tuple

indicates that Funk(i) occurred in SongID at Offsetj . For example, Funk(2) occurred in Song

1 at offsets 412 and 766, as indicated by the arrows in Figure S3.2.

2. Given candidate j, obtain the fingerprint for SongIDj and truncate it to length N in way so

that Funk(i) occurs in the same position of the truncated fingerprint as it does in Funk. We

see that Funk(2) = 0 occurs in the second position of Funk, while it occurs in the 412th and

766th position of Song 1. In order to compare the shorter, length N unknown fingerprint

to Song 1, we need to truncate and align the fingerprint. Denote the truncated and aligned

fingerprint as F trunc
j .

3. Compute the bit error rate (BER) between Funk and F trunc
j , where the BER is the the average

number of binary digits that differ between the two fingerprints.
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4. Declare a match if BER < 0.3. Otherwise repeat steps 2–4.

We repeat steps 1–4 for each sub-fingerprint in Funk until either a match is found or until we’ve

checked all sub-fingerprints, at which point we declare no match.2

S4 Video Summarization

We first briefly summarize the video summarization algorithm. For any given video consisting of a

set of N frames, denoted by V , the optimal summary maximizes uniqueness and representativeness

while keeping the number of frames in the summary at a reasonable level. Here, the uniqueness

quantifies how distinct frames are from one another in the summary, while the representativeness

enforces the rule that for each frame in the video, there should exist at least one frame in the

summary that is visually similar. The component for summary length is used to regularize the

objective function since uniqueness and representativeness are maximized by selecting all frames

in the video. Formally, this optimization problem is written as,

S∗ = argmax
S⊆V

∑
i∈V

max
j∈S

wij︸ ︷︷ ︸
representativeness

+ λ1
∑
i∈S

min
j∈S

dij︸ ︷︷ ︸
uniqueness

+ λ2 (N −NS)︸ ︷︷ ︸
# of unselected

frames

, (S2)

where wij is the cosine similarity between pixel values of frames i and j, dij is the chi-squared

distance between the color histograms of frames i and j, NS is the number of frames selected for

summary S, and (λ1, λ2) control the relative weighting of the different terms.

In order to compute the representativeness wij and the uniqueness dij between two frames i and

j, we first compute a feature representation for each frame. For the representativeness wij , we use

a feature descriptor commonly used in computer vision for object detection called the histogram

of oriented gradients (HOG) (Dalal and Triggs, 2005), which encodes the distribution of gradient

directions for local color intensity. We compute pairwise distances between all frames in the video

using the cosine similarity measure. For the uniqueness dij , we use the Lab histogram. Lab is a

three-component color space that is more perceptually uniform with respect to human color vision

than the standard RGB representation of images. We compute a three-dimensional histogram

using 23 bins along each color dimension (L, a, and b) for every frame of a video file. To measure

the distance dij between the Lab histogram representations of frames i and j, we use the additive

χ2 kernel,

dij =

233∑
b=1

(hi(b)− hj(b))2

hi(b) + hj(b)

where hi(b) and hj(b) are the counts in bin b for frames i and j, respectively.

Since the problem of finding the optimal subset that maximizes the objective function in equa-

tion (S2) is known to be NP-hard, we use an approximation algorithm proposed by Chakraborty,

Tickoo and Iyer (2015). The algorithm works by maintaining two solution sets initialized to S0 = ∅
and S1 = V . At each iteration, it randomly selects a frame without replacement from V and

2To control for the possibility of errors in computing the fingerprint of the unmatched video, we follow the

suggestion of Haitsma and Kalker (2002) and search over sub-fingerprints generated by flipping the three-most

unreliable bits. Here, unreliable bits refer to the three bits for which the energy differences given in equation (S1)

are nearest the decision boundary of 0.
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proposes either adding the frame to S0 or removing it from S1 with complementary probabilities

based the relative change in the objective function that would result from the operation. After all

frames are removed from V , the sets S0 and S1 will coincide, yielding a video summary. While the

algorithm does not necessarily return the optimal summary, the flexibility in choosing the tuning

parameters lets us to control the coarseness of the resulting summary. Following the suggestion

given in Chakraborty, Tickoo and Iyer (2015), we set the tuning parameters to be, λ1 = 1 and

λ2 = 5.

S5 Description of Face Recognition Algorithms

The face detection algorithm takes an image x as input and produces a set of non-overlapping

bounding boxes B = {bi ∈ R4 | i = 1, 2, . . . , k}, where k is the number of detected faces. This

algorithm uses a CNN trained to learn features φ(x,b) and a parameter vector w such that the set

B∗ = argmax
B

∑
b∈B

w>φ(x,b)

corresponds to all bounding boxes for faces in image x. This classification rule is enforced in the

neural network by using a loss layer derived from the MMOD algorithm (King, 2015).

Training the network is achieved through the backpropagation algorithm and stochastic gradient

descent. The author of dlib trained the network using a composite dataset of about 7000 images

taken from several datasets, including WIDER FACE (Yang et al., 2016) and VGGFace (Parkhi,

Vedaldi and Zisserman, 2015). Faces selected into the training set were chosen to reflect a wide

variation in face poses in order to increase robustness in detection.

The next step in the face recognition system is face alignment, which takes an face image x as

input and applies scaling, rotation, and translation matrices to the face so that the eyes are level

and the face is centered and scaled to a specific size. The form of these matrices is determined by the

locations of the facial landmarks estimated with a landmark detector. The dlib implementation for

face alignment uses a 68-point facial landmark detector trained on the iBUG 300-W face landmark

dataset (Sagonas et al., 2016). The detector takes a face image x as input and returns a shape

vector s ∈ R136 which contains the (x, y)-coordinates of all 68 landmarks. Estimation of the shape

vector is done by a cascade of tree regressors, i.e. for an ensemble of K trees, the shape vector for

image x is estimated as

ŝ
(K)
x = ŝ

(0)
x +

K∑
k=1

rk(x, ŝ
(k−1)
x ),

where ŝ
(0)
x is an initial estimate of the shape vector, and rk(x, ŝ

(k−1)
x ) is the kth regression tree

which updates the previous shape estimate ŝ
(k−1)
x . The core idea behind this algorithm is that

each subsequent regression tree refines and improves the previous shape estimate. Each tree in the

ensemble of regression trees is trained using the gradient tree boosting algorithm (see Kazemi and

Sullivan, 2014, for details).

The FaceNet algorithm also uses a CNN. The goal of this network is to compute a vector

representation of the given aligned face image that is close in Euclidean distance to the vector

representation of other images pertaining to the same person, and far from images of other people.

This is accomplished using a CNN with architecture similar to Google’s Inception ResNet-34 (He

et al., 2016) trained on a composite dataset consisting of about 3 million faces taken from the
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(a) Anchor image (xa
j )

(b) Positive image (xp
j )

(c) Negative image (xn
j )

Figure S5.3: An Example of a Hard-to-classify Triplet Pair. The negative image (c) depicts Sam

Brownback who was a republican candidate for the 2014 gubernatorial election in Kansas. The

anchor image (a) is a picture of Ronald Reagan taken from Wikipedia, and the positive image

(b) comes from a campaign ad for Democratic candidate Mary Burke in the 2014 gubernatorial

election in Wisconsin.

VGGFace dataset (Parkhi, Vedaldi and Zisserman, 2015), the face scrub dataset (Ng and Winkler,

2014), and a collection of faces personally chosen and labeled by the dlib package author. The

collection was chosen to have faces containing many variations in pose, emotional expression,

illumination, and occlusion to allow for more robust face embeddings.

The network is trained to learn an embedding f(x) ∈ R128 for a given face image x. The

training process uses a triplet loss function, which, for a given dataset of face images and identities

D = {xi, yi}Ni=1, is defined as,

Lβ(D) =

Ntrip∑
j=1

max
(

0, ||f(xaj )− f(xpj )||
2 − ||f(xaj )− f(xnj )||2 + α

)
,

where the sum is taken over all triplet pairs {(xaj ,x
p
j ,x

n
j )}Ntrip

j=1 of images. For a given image xaj from

the training dataset, called the anchor image, a single triplet pair is formed by selecting another

positive image xpj , which corresponds the same person shown in xaj , and a third negative image xnj ,

which corresponds to a different person. The parameter α corresponds to the margin between the

distances and works to enforce a classification rule ‖f(xaj )− f(xpj )‖2 + α < ‖f(xaj )− f(xnj )‖2 and

is set to α = 0.2.

Since the number of triplets formed from a dataset is large, with many triplets contributing

little or nothing to the loss, only a subset of triplet pairs that are hard to classify are needed

to update the network in each iteration of the algorithm. An example of a hard triplet pair is

shown in Figure S5.3. Because Sam Brownback, who was the 2014 Republican candidate for the

gubernatorial election in Kansas, has similar facial features to Ronald Reagan, the anchor-negative

distance ‖f(xai ) − f(xni )‖ is relatively small, while the anchor-positive distance ‖f(xai ) − f(xpi )‖

9



may be too large due to significant facial misalignment in the positive image. By using triplets such

as these in each step of training, the network adjusts its parameters so that two Reagan pictures

are closer together while Sam Brownback is further away, effectively learning how to distinguish

between faces.

S6 Description of Audio Features

This section provides a more formal description of the audio features we used, which were taken

from (Ren, Wu and Jang, 2015). Let S ∈ RN×K denote the spectrogram for an audio signal,

with Si,k corresponding to the strength of frequency component k in frame i of the spectrogram.

Table S6.2 provides a summary of each audio feature.

S6.1 Short-term Features

S6.1.1 Statistical Spectrum Descriptor (SSD)

Define the frequency associated with bin k as fk = k · Fs/NFFT , where Fs = 22050 and NFFT =

1024. The statistical spectrum descriptor for frame i is a combination of the spectral centroid,

skewness, kurtosis, flux, and rolloff, which are defined as

centroidi =

∑K
k=1 fkSi,k∑K
k=1 Si,k

, skewnessi =
m3(Si)

σ̂3Si

, kurtosisi =
m4(Si)

σ̂4Si

and

fluxi = ‖Si − Si−1‖2, rolloffi = fk∗ , such that

k∗∑
k=1

S2
i,k = 0.85

K∑
k=1

S2
i,k

where m3(Si) and m4(Si) are the sample third and fourth central moment of the spectrum, respec-

tively, and σ̂Si is the sample standard deviation.

S6.1.2 Mel-frequency Cepstral Coefficients (MFCC)

The exact computation of the MFCC is beyond the scope of the paper, instead we defer the

reader to (Lee et al., 2009) for a more formal description and give a high level overview here. The

MFCC computes a low-dimensional representation of the pooled log energies contained in a set of

logarithmically-spaced subbands designed to mimic the human auditory system3 using a Fourier-

like transform called the discrete cosine transform. This procedure aims to give a low-dimensional

representation of the spectral envelope of the spectrum. We retain the first 20 coefficients of the

MFCC and use the energy contained in the entire frame to form the feature vector.

S6.1.3 Octave Spectral Contrast (OSC)

The OSC characterizes differences in the peaks and valleys of the spectrum across 8 logarithmically-

spaced subbands. Formally, for each frequency band a, we sort the bins in the subband in order

of increasing magnitude. Defining the number of bins in band a as Na and P ia,k as the magnitude

for the kth bin in band a in frame i, we take the smallest and largest 20% bins and compute the

3For example, a human would perceive a 500Hz and 1000Hz tone to be as different as 2000Hz and 3000Hz tone.

The perceptual spacing between tones is nonlinear on the Hz scale.
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Type Name Dimension Description

Short-term

Features

SSD 10
Statistical descriptor for shape of the spectrum,

which is determined by the timbral qualities of

the audio signal.

MFCC 42
Low-dimensional representation of the spectrum

shape based on a nonlinear frequency scale mod-

eling human perception.

OSC 32

Measure of the variation between peaks and val-

leys in eight logarithmically-spaced frequency

subbands. This feature is a characterization of

how noise-like or tone-like the audio signal is.

SFM/SCM 32

Measure of frequency dispersion in eight

logarithmically-spaced frequency subbands.

This feature is also a characterization of how

noise-like or tone-like the audio signal is.

Long-term

Features

Modulation

Feature
112

Septal-based spectral contrast feature derived

from modulation feature spectrograms for the

MFCC. This feature characterizes perceptual

audio qualities like tempo and rhythm, which

occur on a longer time scale than timbre.

Joint-frequency

Feature
224

Spectral contrast feature derived from the joint-

frequency spectrogram, which characterizes the

short-term and long-term frequency variations.

This feature also characterizes rhythm and

tempo.

Table S6.2: Music features used for mood classification and sentiment analysis. The short-term

features measure the timbral qualities of the audio on a short time scale, while the long-term

features characterize perceptual qualities like rhythm and tempo, which occur on a longer time

scale.

peak and valley as

Peaki(a) = log

 1

d0.2Nae

d0.2Nae∑
k=1

Pa,k

 , V alleyi(a) = log

 1

d0.2Nae

d0.2Nae∑
k=1

Pa,Na−k+1

 .

Taking the difference between the peaks and valleys yields the contrast for band a in frame i. The

OSC feature matrix is formed by concatenating the contrast and the values together.
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S6.1.4 Spectral Flatness Measure/Spectral Crest Measure (SFM/SCM)

SFM/SCM quantify how noise-like or how tone-like the audio signal is. Like the OSC, these

quantities are computed in 8 logarithmically-spaced subbands. Using the same definitions in the

OSC section, the SFM/SCM is computed as

SFMi(a) =

Na

√∏Na
k=1 Pa,k

1
Na

∑Na
k=1 Pa,k

, SCMi(a) =
maxk=1,...,Na Pa,k

1
Na

∑Na
i=k Pa,k

.

An SFM of 1 implies the spectrum has relatively equal magnitudes at all frequencies, which

corresponds to audio that sounds like white noise, such as radio static. Low spectral flatness

suggests that the energy in the spectrum is concentrated around only a few frequency bands,

corresponding to an audio signal that sounds like a mixture of tones. An SCM of 1 corresponds to

a flat, noise-like spectrum, while and SCM much larger than 1 indicates the spectrum is “spiky”.

S6.2 Long-term Features

S6.2.1 Modulation Feature Spectrogram

The modulation feature spectrogram is used to compute the long-term features, which aim to cap-

ture information regarding the rhythm, tempo, and beat of an audio signal. They are constructed

from the short-term feature matrices. Formally, given a short-term feature matrix F ∈ RN×D and

defining the dth column F as Fd, we compute the modulation spectrogram via the following steps:

1. For each feature d, compute the spectrogram corresponding to the feature signal Fd using a

segment length W = 256 and an overlap factor of 1/2. This step produces a T × 129 matrix

Md, where T depends on the number of frames N in the original spectrogram.

2. Collapse the matrix Md to a single vector md ∈ R129 by taking the average over all rows. md

characterizes the frequency content of feature d.

3. Row stack the vectors md to form the modulation feature spectrogram MF ∈ RD×129.

As was the case for the short-term feature, the long-term feature is a characterization of the

modulation feature spectrogram, and e use the septal-based spectral contrast as th. For a modu-

lation feature spectrogram MF , we partition this matrix along the columns into 7 logarithmically

spaced subbands. Defining the number of bins in band a as Na and P da,k as the magnitude for

the kth modulation frequency bin in band a for feature dimension d, the valleys and peaks in are

computed as

MPeak(d, a) = max
k∈a

P da,k MV alley(d, a) = min
k∈a

P da,k,

We form the contrast by taking the difference between the peaks and valleys, all of which are

D × 7 matrices. We take the mean and standard deviation along the rows and columns of the

valley and contrast matrices, separately, and stack these together to produce a feature f ∈ R4D×28.

We independently apply this procedure to the MFCC feature matrix, the OSC feature matrix, and

the SFM/SCM feature matrix and concatenate these all together to form the long-term feature

LT ∈ R296.
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S6.2.2 Joint-Frequency Feature

The averaging step in computing the modulation feature spectrogram throws out some information

regarding the temporal evolution of the modulation features. The purpose of the joint-frequency

feature is to recover and characterize this lost information. After obtaining the spectrogram S ∈
RN×513 described at the beginning of Section 3.2.3, another one-sided FFT is performed along

each column of S, followed by an absolute value operation, yielding a matrix J ∈ RN/2+1×513.

This matrix is then partitioned into a 7 × 8 grid using the same logarithmically-spaced subbands

as the octal- and septal-based spectral contrast features described above. Each block of the grid

is vectorized, a we compute the spectral contrast, spectral valley, spectral flatness measure, and

spectral crest measure as defined in the short-term feature section. This process produces four

matrices, each of dimension 7 × 8. We vectorize and stack the matrices together to form the

joint-frequency feature JF ∈ R224.
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Figure S7.4: Results of the Validation Study for the Video Summarization Algorithm. The left

plot shows the comparison between the number of frames selected into the summary for the auto-

and manually-generated summaries. The middle and right plots show the comparison between

the distributions of representativeness and uniqueness over automated (blue) and manual (orange)

summaries, respectively.

S7 Video Summarization Validation Study

The results of our validation study are summarized in Figure S7.4. The left-most plot shows a

comparison of the number of frames selected between the auto- and manually-generated summaries.

Recall that the uniqueness quantifies how distinct frames are from one another in the summary,

while the representativeness enforces the rule that for each frame in the original video, there

should exist at least one frame in the summary that is visually similar. We see that for all

videos, the summarization algorithm selected the same or more number of frame as the manual

summary. Since the original video files contain roughly 720–960 frames, both summaries resulted in

a roughly 97%–99% reduction in the number of frames. Furthermore, computation of the summary

took approximately 20–40 seconds for each video. These results suggest summarization may yield

significant efficiency gains over methods which analyze all frames in the video.

In the middle plot we show the distribution of the normalized summary representativeness. We

find that the auto-generated summaries tend to be slightly more representative than the manually-

generated summaries, suggesting the algorithm does well in representing the content of the video.

The right-most plot shows the distribution of the normalized uniqueness measure. A high value of

this statistic suggests there are few duplicates in the summary. We find that the auto-generated

summaries tend to be less unique than the manually-generated summaries. This is not surprising

since the algorithm tended to produce a greater number of frames than manual summarization.

Finally, visual inspection of auto-generated and manual summaries indicates that the algorithm

produced summaries that contain at least one image for each shot in video in 75% of the sample. In

all instances where an image is missing, the missing image either contains no meaningful information

pertaining to the WMP variables examined in this study, or there is another image in summary

that carries the same visual information. For example, if a candidate appeared multiple times

in an ad in multiple, near-identical shots, the algorithm would select a representative frame in

14



only some of these shots. Such issues, which were the most common cause of missingness in our

study, would not lead to errors further downstream in our video processing pipeline. We emphasize

that although, as shown below, video summarization does not appear to degrade our classification

performance, it may have resulted in the loss of other important information.
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S8 WMP Variable Encoding Instructions

Table S8.3 shows the instructions given to the human coders for the variables automated in our

work.

Variable Prompt Choices Note

Issue Mention

(Political figures)

Are any of the following

mentioned or pictured in the

ad?

0 = No We treat all “Yes”

answers as 1.1 = Yes, in a way

to show approval or

support

2 = Yes, in a way to

show disapproval or

opposition

3 = Yes, unclear

whether in support

or opposition

Issue Mention

(Words/phrases)

Are any of these words or

phrases specifically

mentioned in the ad?

0 = No We exclude Working

Class, Middle Class,

and Upper Class /

Rich / Wealthy from

our analysis

1 = Yes

Issue Mention

(General)
Are any of the following

issues mentioned in this ad?

0 = No We merge abortion

and women’s health

into a single issue

1 = Yes

Opponent Mention Excluding the oral approval,

is the opposing candidate

mentioned by name in the

ad?

0 = No

1 = Yes

Candidate Picture
Excluding the oral approval,

is the favored / opposing

candidate pictured in the ad?

0 = No

1 = Yes

Candidate Picture

(Oral Approval)

Does the candidate

physically appear on screen

and speak to the audience

during oral approval?

0 = No Static images

accompanied by a

voice-over do not

count

1 = Yes

Music Mood If music is played during the

ad, how would it best be

described?

0 = No Asked for each of

“ominous/tense”,

“uplifting”,

“sad/sorrowful”

1 = Yes
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Variable Prompt Choices Note

Ad tone (WMP)
In your judgment, is the

primary purpose of the ad to

promote a specific candidate,

attack a candidate, or

contrast the candidates?

1 = Contrast
We ignore ads marked

with “Contrast”
2 = Promote

3 = Attack

Table S8.3: WMP Encoding Instructions for Automated Variables.

S9 Keywords Used for Issue Detection

Among a total of 83 issues, we use the WMP issue names and the last names of political actors for 44

issues (e.g., “tax” for the Tax issue, and “Pelosi” as the Pelosi issue). For 16 issues, we also added

synonyms and some words that share the same roots. For example, we add “Chinese” as another

keyword for the China issue, and include the word root “agricult,” in addition to “farm” as a

keyword for the “farming” issue. Third, for 21 issues, we have added relevant common expressions.

For example, we include “climate change” as an additional keyword for the global warming issue.

Another example is the addition of “second amendment,” “2nd amendment,” “NRA,” and “bear

arms” for the gun control issue. Finally, for the jobs/employment and abortion/women’s health

issues, we use a more extensive list of relevant words and phrases. Table S9.4 shows the list of

keywords associated with each topic arranged in the order they are defined by the WMP and

grouped together in broad categories.

Issue/Figure Keywords Frequency

in WMP

Barack Obama obama|the president|our president 603

George W. Bush bush 21

Ronald Reagan reagan 5

John Boehner boehner 7

Nancy Pelosi pelosi 52

Mitch McConnell mcconnell 26

Harry Reid reid 14

Congress
congress

419
NOT in congress|for congress|to congress †

Democrats democrats|and democrat|or democrat 229

Republicans republicans|and republican|or republican|GOP 270

Tea Party tea party 43

God
god

8
NOT thank god †

Hope
hope

21
NOT i hope|we hope †

Change change 121

Experience experience 50
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Issue/Figure Keywords Frequency

in WMP

Liberal liberal 76

Conservative conservative 163

Special Interest special interest 71

Negative Campaigning negative campaign 18

Main Street main street 6

Wall Street
wall street

87
NOT wall street journal †

Big Government big government 23

Tax tax 769

Deficit/Budget/Debt deficit|budget|debt 482

Government Spending spending 309

Recession/Stimulus/Bailout recession|stimulus|bailout 86

Minimum Wage minimum wage 51

Farming farm|agricult 62

Business
business

351
NOT businessman †

Union union 11

Jobs/Employment

jobs|outsourc|employment|unemploy|
1105out of job|back to work + many forms of

[create job], [lose job], [kill job]

Poverty poverty 14

Trade/Globalization
trade|globaliz|NAFTA

113
NOT cap and trade †

Housing/Subprime Mortgage housing|subprime|sub prime 38

Economy (Generic) economy|economic prosperity 273

Inequality unequal|inequal|equal pay 53

Abortion/Women’s Health

abortion|pregnan|woman’s right to choose|

213

women’s right to choose|reproductive right|
pro choice|pro life|woman’s health|
women’s health|birth control|contracept|
planned parenthood + various forms of

[Roe v. Wade]

Homosexuality/Gay/Lesbian

lgbt|gay|lesbian|transgender|same sex|
16marriage equality|traditional marriage|

one man and one woman

Moral/Family/Religious Values honesty|integrity|moral|family value 100

Tobacco tobacco|cigarette 0

Affirmative Action affirmative action 2

Gambling gambling 0

Assisted Suicide/Euthanasia euthanasia|assisted suicide 0

Gun Control
gun|second amendment|2nd amendment|

63
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Issue/Figure Keywords Frequency

in WMP

bear arms|NRA

Civil Liberty/Privacy
civil libert|freedom of speech|free speech|

12
freedom of religion|freedom of faith|privacy

Race Relations/Civil Rights civil right 6

Crime crime|criminals|violence|victim|predator 47

Narcotics/Drugs

drugs|drug addict|drug deal|drug lord|narcotic|
11marijuana|cocaine|heroin|opioid|opiate

NOT prescription †
Capital Punishment/Death

Penalty

death penalty|capital punishment 2

Supreme Court/Judiciary judicia|supreme court|courts 4

Education/Schools
educat|schools|tuition|affordable college|

445
college affordable|college more affordable

Lottery for Education lottery for education|education lottery 4

Child Care

childcare|child care|daycare|day care|
17care for your child|care for our child|

care for your kid|care for our kid

Healthcare
healthcare|health care|health insurance|

428
medical insurance|obamacare|affordable care

Prescription Drug prescription drug 22

Medicare medicare 417

Social Security social security 254

Welfare welfare 26

Military
military|troops|armed force|servicemember|

145
service member|in uniform|war in|wars in

Foreign Policy foreign policy 19

Veterans veteran|vet|VA|world war|vietnam war 244

Foreign Aid foreign aid 4

Nuclear Proliferation nuclear proliferation|nuclear weapon 3

China china|chinese 68

Middle East middle east 16

Afghanistan afghan 26

September Eleven 911|september eleven|nine eleven|september 11 7

Terror/Terrorism/Terrorist terror|war on terror 35

Iraq iraq 54

Israel israel 2

Iran iran 4

Environment environ|EPA|cap and trade 32

Global Warming global warming|climate change 12

Energy
energy|power plant|keystone|pipeline|coal|

195
petroleum|natural gas|solar|fracking
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Issue/Figure Keywords Frequency

in WMP

BP Oil Spill oil spill 4

Campaign Finance Reform campaign finance|citizens united 13

Government Ethics/Scandal corrupt|government ethics|government scandal 144

Corporate Fraud corporate fraud 22

Term Limit term limit 6

Pledge of Allegiance pledge of allegiance|pledge allegiance 0

Immigration immigra|alien|border|dream act|amnesty 66

Local Issues local 186

Government Regulation regulation 118

Table S9.4: Comprehensive List of Keywords Used for Automated Detection of Issues/Figures.

† Exclusion rules are applied.
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S10 Scripts for Amazon Mechanical Turk Tasks

Figure S10.5: An Example Script for Issue Detection Task as Seen by Amazon MTurkers.
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Figure S10.6: An Example Script for Musical Mood Detection Task as Seen by Amazon MTurkers.

The script also includes a second question on the emotional appeal of the ad, which was not used

in the paper.
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(a) Campaign ad by Republican candidate Ken

Cuccinelli for the 2014 gubernatorial election in Vir-

ginia. The automated coding algorithm detected

some of the smaller text from the newspaper clip-

ping, incorrectly choosing the deficit/budget/debt

issue.

(b) Campaign ad by Democratic candidate Pat

Quinn for the 2014 gubernatorial election in Illinois.

The automated coding algorithm detected the word

“Taxpayer” from the disclaimer showing the cam-

paign ad sponsor, incorrectly choosing the tax issue.

Figure S11.7: Examples Illustrating the Mistake of the Automated Coding for the Issue Mention

Variable.

S11 Issue Mention Validation Results

We examine the conditions under which the automated procedure makes mistakes in coding the

issue mention variable. To do this, we select a random subset of 120 issue-video pairs from the

300 disagreement cases used for the MTurk study (70 false positives and 50 false negatives) and

carefully watch these videos to correct any mistakes for these pairs. We note that many of the

samples in this analysis correspond to most difficult cases in which the “correct” coding is unclear

due to ambiguity in WMP’s instructions, and thus our corrected label set may contain bias.

We find that the automated coding made 22 mistakes out of 70 false positive evaluations,

implying that the automated coding greatly outperformed the WMP coding in these cases. The

most frequent mistake of our automated coding procedure is due to the fact that it ignores the

context. For example, the use of the keyword “trade” in the context of the World Trade Center

was considered as mentioning trade/globalization. The other reason for mistakes is our automated

procedure detects irrelevant text in the background of ads. Figure S11.7a shows an example

in which the automated coding algorithm detected on-screen text from a newspaper clipping,

leading to a false positive declaration. The automated coding also incorrectly treated the names

of institutions as mentioning certain issues. One such example is given in Figure S11.7b, where

the coding algorithm detected the keyword “tax” in the name of an organization, “Taxpayers for

Quinn,” who sponsored the campaign ad.

We have also examined 50 false negative cases and found that the automated coding resulted in

31 mistakes, suggesting that the WMP had better performance in these cases. The most frequent

reason for mistakes is missing keywords, which is relatively easy to correct by simply including

an additional set of keywords. Examples include “college debt” and “teachers” for the education

issue and “foreign competition”for the trade/globalization issue. The second most frequent reason

is an indirect mention of issues. For example, an ad included the phrase “opposed buy American

provisions for military weapon systems”, as an indirect mention of trade/globalization issue; another
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ad used the phrase “asking the wealthy to pay more” in the context of the tax issue. These cases

represent a challenge to keyword-based approaches such as ours, since accounting for all such

variations in indirect references is impossible for most practical purposes.

S12 Opponent Mention Validation Results

Like in the previous section, we carefully watch all 90 videos in the disagreement conditions and

correct any mistakes made by WMP coders. In our labeling procedure, we treat all on-screen text

of the opponent’s name as an instance of an opponent mention, though we note that WMP provides

no guidelines on how this should be handled. Out of 67 false positives (i.e., the automated coding

gives Yes while the WMP gives No), the automated coding makes only three mistakes, all of which

were due to ignoring context. Two instances occurred in an election where both the opponent

and candidate shared the same last name, and the final instance referenced the opponent during

the approval segment, which violates the definition of the variable. For the 23 videos in the false

negative condition (i.e., the automated coding gives No while the WMP gives Yes), the automated

coding makes 16 mistakes.

The most frequent reason (13 out of 16) why the automated coding fails to detect the mention

of opponents is the mis-transcription of the last names of the opposing candidates, especially

when they are relatively uncommon. Examples include mishearing “Tisei” as “to say,” “Lankford”

as “Langford,” and “Critz” to “Crits.” Among the three remaining errors, one is because the

opponent was mentioned by first name only, another because a sample labeled as an ad for a

general election was actually for the primary election, so the wrong opponent name was used in

our method, and the last one due to “Obamacare” being treated as a reference to the opponent,

Barack Obama. Altogether, in cases of disagreement, our method is correct 71 out of 90 (79%)

cases, which demonstrates that the performance of automated coding of the opponent mention

variable exceeds that of WMP human coding.

S13 Face Recognition Validation Results

We first plot the ROC curves in Figure S13.8. The left plot shows the ROC curve using the orig-

inal variable for opponent candidate appearance and the combined variable for favored candidate

appearances, both of which exclude appearances during the oral approval segment. The right plot

shows the ROC curve using recoded variables in which we corrected mistakes in the WMP coding

and dropped the restriction that candidates appear outside the oral approval segment. The re-

sults in the left plot show that face recognition performs well on opponents and poorly on favored

candidates. After recoding the variables, the performance greatly improves, suggesting that face

recognition is very accurate in this application.

Next, we watch all videos corresponding to the 216 disagreement cases (148 for the favored

candidates and 68 for the opponents) to identify the reasons why the WMP coders and the face

recognition algorithm differ. For the cases of favored candidates, the primary reason for disagree-

ment (97 cases or 67%) is that the algorithm has detected the images of favored candidates within

the oral approval segment. This is expected as we did not add any filter regarding the restriction

made by the WMP. The second most frequent reason (33 cases or 22%) is that the algorithm had

a difficult time dealing with angled or occluded faces, or the quality of the video was poor. The

remaining 18 disagreements (12%) are due to mislabeling by the WMP coders. For the opposing
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Figure S13.8: ROC Curves for the Face Recognition Algorithm. The left plot shows the face

recognition performance using the original WMP data for the favored and opposing candidate

mentions. The right plot shows performance using the corrected WMP variables.

candidates, 47 disagreements (69%) are due to image or face quality. The remaining 21 cases (31%)

are due to mislabeling on the part of the WMP.

Finally, we evaluate the performance of the face recognition algorithm by removing the re-

striction that the favored candidates appear in the main segment of an ad alone. To do this,

we manually recode the WMP variables for the disagreement cases so that the variable represents

whether the favored candidate appears in any segment. We also correct the labeling mistakes made

by the WMP coders. Note that this procedure assumes the agreements between the manual and

automated codings indicate the accurate classification, so the results of this exercise will lead to

inflated results in our favor, since we benefit from making the same mistakes as WMP. We compute

the precision, recall, and accuracy of the face recognition algorithm using the corrected data and

find that they are 0.99, 0.96, and 0.96 for the favored candidates and 0.97, 0.86, and 0.94 for the

opposing candidates, respectively. These numbers represent an impressive performance of the face

recognition algorithm.
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S14 Additional Validation Results

S14.1 MTurk Analysis for Music Mood Variables

Majority Opinion among MTurkers

Ominous/Tense Uplifting Sad/Sorrowful

No Yes No Yes No Yes

WMP Coding
No 60.89% 7.33% 24.44% 4.67% 78.22% 7.11%

Yes 7.78% 24.00% 9.78% 61.11% 7.11% 7.56%

Table S14.5: Comparison of the Musical Mood Variables between the WMP and MTurker Codings.

MTurk coder responses are transformed to a binary variable based on the majority opinion. The

value in each cell corresponds to the proportion of the four different combinations of results from

the WMP and automated coding schemes. The three two-by-two matrices correspond to the three

different moods of music used in the WMP data. The results shown here are from the test data

set of size 450.
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Figure S14.9: Number of MTurkers Who are in Agreement with Automated Coding For Uplifting

Music. Four cases are based on the agreement between the WMP and automated codings. The

total number of MTurkers for each task is five. The texts within each plot show the number

of videos included in each sample as well as the mean and standard deviation of the number of

MTurkers in agreement with the automated coding.
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Figure S14.10: Number of MTurkers Who are in Agreement with Automated Coding For

Sad/Sorrowful Music. See the caption of Figure S14.9 for details.
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S14.2 Classification Performance for Ad Negativity Variable

Linear SVM

Text Only Music Only Text and Music

No Yes No Yes No Yes

WMP Coding
No 30.09% 10.66% 25.12% 15.64% 33.65% 7.11%

Yes 5.70% 53.55% 8.29% 50.95% 7.82% 51.42%

KNN

Text Only Music Only Text and Music

No Yes No Yes No Yes

WMP Coding
No 21.33% 19.43% 17.76% 22.99% 14.69% 26.07%

Yes 1.18% 58.06% 7.35% 51.90% 5.45% 53.79%

Random Forest

Text Only Music Only Text and Music

No Yes No Yes No Yes

WMP Coding
No 28.67% 12.09% 22.04% 18.72% 22.51% 18.25%

Yes 5.21% 54.03% 9.00% 50.24% 5.21% 54.03%

Naive Bayes

Text Only Music Only Text and Music

No Yes No Yes No Yes

WMP Coding
No 31.28% 9.48% 31.75% 9.00% 31.52% 9.24%

Yes 6.16% 53.08% 31.05% 28.20% 15.40% 43.84%

Table S14.6: Comparison of the Ad Negativity Variable between the WMP and Automated Codings

Using Linear SVM, KNN, Random Forest, and Naive Bayes. The value in each cell corresponds to

the proportion of the four different combinations of results from the WMP and automated coding

schemes. The three two-by-two matrices in each row correspond to the three types of input data

used to train the models. The results shown here are from the test data set of size 422.

29



S14.3 Ad Negativity Classification using LSD

Automated Coding

LSD (Full) LSD (Test) Ours (Test)

No Yes No Yes No Yes

WMP Coding
No 15.57% 24.17% 15.64% 25.12% 31.99% 8.77%

Yes 9.74% 50.52% 11.14% 48.10% 6.87% 52.37%

Table S14.7: Comparison of the Ad Negativity Variable between the LSD and Automated Codings

Using the Non-linear SVM. The value in each cell corresponds to the proportion of the four different

combinations of results from the WMP and automated coding schemes. Full sample size is 2106

and test sample size is 422.
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S14.4 Impact on Downstream Analysis

Dependent variable:

Issue Convergence

WMP Coding Automated Coding

Competitiveness 5.125 2.700

(5.425) (5.785)

Total Spending/VEP −0.447 −0.255

(0.464) (0.465)

Diff. in Spending/VEP −0.182 0.034

(0.820) (0.801)

Negative Ads 0.199∗ 0.222∗∗

(0.111) (0.109)

VAP (logged) −8.650∗∗ −8.224∗∗

(3.419) (3.332)

Year 2012 10.009∗∗ 6.884

(4.482) (4.348)

Consensual 12.704∗∗ 32.157∗∗∗

(6.440) (7.974)

Owned 11.323∗∗ 10.663∗∗

(4.547) (4.780)

Salience 0.662∗∗ 0.474∗

(0.260) (0.283)

Constant 123.657∗∗ 120.178∗∗

(49.728) (49.186)

Observations 292 290

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table S14.8: Application of Methods Used in Kaplan, Park and Ridout (2006) for 2012 & 2014

Using WMP and Automated Coding. The base data sets are prepared by either using the WMP-

provided issue mention variables or replacing them with automated ones. Although standard errors

tend to be slightly larger with the automatically coded data, the two analyses produce substantively

similar results.
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The analysis of this appendix examines the downstream impact of automatic coding on regres-

sion analysis. We use an existing analysis in political science literature (Kaplan, Park and Ridout,

2006). Using the WMP manually coded data, the authors produced a measure of issue conver-

gence between Republican and Democratic campaign TV advertisements and employed a variety of

campaign- and issue-specific independent variables to explain potential causes of the said measure

(see the original article for details). The independent variables used for each random effects model

were modeled after the original study, including which issues are defined as owned or consensual.

The issue salience measure was only available for 2012 and had to be reused for 2014. Here, we

simply compare the results of the same regression analysis between the automatically and manually

coded data sets. The table indicates that although standard errors tend to be slightly larger with

the automatically coded data, the two analyses produce substantively similar results.
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