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1. INTRODUCTION

We are grateful to our four discussants for their
agreement with and contributions to the central points
in our article (Imai et al., 2009b). As Zhang and Small
(2009) write, “[our article] present[s] convincing ev-
idence that the matched pair design, when accompa-
nied with good inference methods, is more powerful
than the unmatched pair design and should be used
routinely.” And, as they put it, Hill and Scott (2009)
“do not take issue with [our article’s] provocative as-
sertion that one should pair-match in cluster random-
ized trials ‘whenever feasible.” ” Whether denominated
in terms of research dollars saved, or additional knowl-
edge learned for the same expenditure, the advantages
in any one research project of switching standard ex-
perimental protocols from complete randomization to
a matched pair designs (along with the accompanying
new statistical methods) can be considerable.

In the two sections that follow, we address our dis-
cussants’ points regarding ways to pair clusters (Sec-
tion 2) and the costs and benefits of design- and model-
based estimation (Section 3). But first we offer a sense
of how many experiments across fields of inquiry
can be improved in the ways we discuss in our ar-
ticle. We do this by collecting data from the last
106 cluster-randomized experiments published in 27
leading journals in medicine, public health, political
science, economics, and education. We then counted
how many experiments used complete randomization,
blocking (on some but not all pre-treatment infor-
mation), or pair-matching—which respectively exploit
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none, some and all of the available pre-randomization
covariate information. Table 1 gives a summary. Over-
all, only 19% of cluster-randomized experiments used
pair-matching, which means that 81% left at least some
pre-randomization covariate information on the table.
Indeed, almost 60% of these experiments used com-
plete randomization and so took no advantage of the
information in pre-treatment covariates. The table con-
veys that there is some variation in these figures across
fields, but in no field is the use of pair matching in
cluster-randomized designs very high, and it never oc-
curs in even as many as 30% of published experiments.
Administrative constraints may have prevented some
of these experiments from being pair matched, but
as using this information involves no modeling risks,
the opportunities for improving experimental research
across many fields of inquiry seem quite substantial.

2. HOW TO CONSTRUCT MATCHED PAIRS

Zhang and Small (2009) offer some creative ideas on
how to construct matched pairs based on minimizing
the total (i.e., across pairs) Mahalanobis-based distance
metric, which is referred to as an “optimal” method.
This procedure can be useful in many situations, and
will usually be superior to Mahalanobis-based match-
ing methods that do not consider imbalances for all
pairs simultaneously.

This technique, of course, is not always appropriate.
For example, the procedure assumes that Mahalanobis
distances make sense for the input data, which means
that the variance matrix which scales the distances is
known or can be estimated, and that the input variables
are close to normal. Perhaps even more importantly,
the procedure maps all the distances to a scalar to mea-
sure balance; this assumes that the researcher is willing
to reduce balance within pairs for some pre-treatment
variables in order to achieve a larger improvement for
other variables. However, if the set of variables having
its balance reduced has a bigger impact on the outcome
than the other set, then the trade-off implied by the dis-
tance metric would be ill advised. One way to avoid
these trade-offs is to use a matching method without a
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TABLE 1
Percent of recent cluster-randomized experiments in each of four research fields using unblocked, blocked (on a subset of available
pre-treatment covariates) or pair-matched designs

Amount of pre-randomization

design information used

None Some All
Field (Unblocked) (Blocked) (Pair-matched) N
Medicine and public health 56.2% 20.5% 23.3% 73
Political science 71.4 23.8 4.8 21
Economics 42.9 28.6 28.6 7
Education 80.0 20.0 0.0 5
Total 59.4 21.7 18.9 106

Row totals may not add to 100% due to rounding. For details on these data, see the Appendix.

scalar balance metric, such as “coarsened exact match-
ing” which guarantees that the maximum possible im-
balance for each variable is set by ex ante user choice
(Iacus et al., 2008).

Our qualifications here are minor, of course, as
most versions of pair matching with a good choice
of pre-treatment variables would normally represent
a tremendous improvement over a complete random-
ization design with respect to bias, power, efficiency,
and robustness. And Zhang and Small’s point is clearly
correct that one can often do better by considering bal-
ance on all pairs simultaneously in the context of scalar
distance-based balancing.

Finally, we note that constructing matched pairs in
experimental work is similar to the problem of match-
ing in observational causal inference. The technolo-
gies available for that problem can in some cases
be adapted for use in matching pre-randomization
(Greevy et al., 2004; Ho et al., 2007). A large num-
ber of these methods, including optimal matching, are
collected in Matchlt software (Ho et al., 2009).

3. MODEL VS. DESIGN-BASED ESTIMATORS FOR
MATCHED PAIR EXPERIMENTS

Hill and Scott’s (2009) informative commentary
raises the venerable contrast between model-free and
model-based estimators, to which we offer four points.
First, we agree that models are sometimes warranted,
valuable, or unavoidable. For example, our encompass-
ing approach (Section 4.5 in our article) is a hierarchi-
cal model that adds modeling assumptions in order to
potentially gain greater efficiency, although at the risk
of greater bias; in our application, we multiply impute
missing data with a model (Honaker and King, 2009);

and the article on the design of our experiment pro-
posed modeling to correct for certain types of possible
experimental failures (which, as it turned out, did not
materialize) (King et al., 2007).

Second, models are sometimes useful in providing
helpful intuition. For example, Hill and Scott (2009)
write “In some ways, the IKN framework is actually
quite similar to the multilevel framework that allows
for variation in treatment effects across pairs.” In fact,
we prove in Section 3.2 that Hill and Scott’s model
without covariates is identical to our design-based esti-
mator when the within-pair cluster sizes are the same.
The two approaches only diverge in meaningful ways
when covariates are included.

Third, randomization along with a design-based
(i.e., model-free) estimator has benefits no model can
match: instead of inferences that are somewhat robust
to some types of model misspecification in some cir-
cumstances, design-based estimators are entirely in-
variant to any modeling or ignorability assumptions.
This is the unique and extraordinary contribution of
the idea of randomization to causal inference, when
used with appropriate methods. In contrast, in even
pristine experimental data, using the wrong model can
generate bias, inefficiency, higher mean square error,
and incorrect confidence interval coverage, especially
in small samples (Freedman, 2008). While modeling
can improve efficiency under some circumstances like
the simulations of Hill and Scott, jettisoning the ad-
vantage of randomization by introducing unnecessary
modeling assumptions is not something that should be
done routinely. Although researchers who have put in
the extra effort and expense, and often special Institu-
tional Review Board approval to implement a random-
ized study may in some situations agree to sacrifice
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the guarantee of unbiasedness for a chance at lower
variances, such a choice comes at substantial risk. It is
no wonder that the vast majority of experimentalists,
recognizing randomization as the greatest strength of
their research design, abhor unnecessary assumptions
and avoid model-based estimation in most stuations.
See Imai et al. (2008); Imbens (2009).

Fourth, unnecessary modeling can introduce more
severe biases when applied in the context of exper-
imental failures common in real world applications.
An important example of this issue occurs when con-
trolling for a covariate that is influenced by the treat-
ment variable, which can result in post-treatment bias.
For example, in community-based experimental set-
tings, covariates measured in baseline surveys just be-
fore the introduction of treatment may capture be-
havioral changes arising from subjects’ anticipation
of being in the control group and from other experi-
menter and observer intervention that may differ be-
tween treatment and control clusters, a common situ-
ation in observational studies (Ashenfelter, 1978). In-
deed, the data generation process for the Monte Carlo
simulations in Hill and Scott (2009) injects this real
world post-treatment variable problem into the data
(see Section 3.1). We show that in this situation model-
based estimates are not robust to small changes in the
simulation setup.

Finally, the most important risk in resorting to un-
necessary modeling assumptions is the introduction of
model dependence (King and Zeng, 2006; Ho et al.,
2007). Indeed, we show analytically in Section 3.3 and
via simulation in Section 3.4 that model-based infer-
ences in experimental data can be highly model depen-
dent. We then offer two simulated examples. In one,
changing a linear modeling assumption to a nonlinear
modeling assumption produces large biases and incor-
rect confidence interval coverage, and in such a way
that model fit tests do not avoid. And in the other, we
show that adjusting for a pre-treatment but incorrect
covariate can produce inefficient estimates and lead
to confidence intervals with inaccurate coverage when
compared to the design-based estimator.

3.1 The Data Generation Process

We begin with Hill and Scott’s (2009) data gen-
erating process. For individual i, in cluster j (j =

1,2),and pairk (k =1, ..., K), we generate individual

level potential outcomes as Y;jx (f) L N ik(@), 03),

where f = 1 is treated, t = 0 is control. Under their data

generating process,

1) Y10 "5 N (o, o),

Q) You(0) "= Y 1 (0) + 8. S ~N(0,02),

3) Y1) = Y1,(0) + Tk,
@) Yu() = You(0) + o,

where (o is the mean cluster-level potential outcome
under control, and o represents the standard deviation
of within-pair imbalance. Furthermore, Hill and Scott
set the causal effect (the difference in the potential out-
comes, averaged over all individuals within a cluster)
as Tjx = 30/Y jx(0). This specification implies that 7
does not have finite moments and thus the population
average treatment effect does not exist.

Hill and Scott further assume that the cluster is
treated (¢t = 1) if j =2 and not (r = 0) if j = 1. This
means that the distributions of potential outcomes are
different between the treatment and control groups,
which indicates that this is a simulation where the ran-
domization failed: Although the means of the potential
outcome are the same, their variances are different un-
less o5 = 0.

Hill and Scott then generate their cluster-level co-
variate as

Xjk=Xjx(Tjx) =Y jx(0) + ¢k

=Y 1k (0) + Tjkdk + &jk»

&)

where Tji is the cluster-level treatment indicator and
ik RN (0, 03). The specification implies that X j is
a post-treatment covariate since the distribution of X jx
is a consequence of treatment and, in particular, differ-
ent between the treatment and control groups. Again,
although the mean of X is the same (and equal to
o), its variance is different unless o5 = 0. Note espe-
cially that all random deviations from the normal draw
of Y 14(0) are reflected in X j;, which accounts for its
fit to the data.

In their simulations, the results from which we repli-
cate exactly, Hill and Scott sample cluster sizes from
a multinomial distribution with a mean of 50. In the
simulations we present here, we similarly sample clus-
ter sizes from a multinomial distribution, but vary the
average cluster size to represent other typical cluster-
randomized experimental settings that commonly em-
ploy fewer clusters than were used in the Seguro Pop-
ular evaluation.
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3.2 The Model without Covariates: Equivalent to
the Design-Based Estimator

Hill and Scott propose the following model with-
out covariates, which we show here is equivalent to
our design-based estimator when the within-pair clus-
ter sizes are the same:

Yiik = wTljx+ar +€jk,
(6)

ii.d.
where ¢~ N(0,02),

o ()0 %)

where 7; is the pair-specific average treatment effect
and €;j AL (tx, o). We rewrite this model as

ii.d.
Yijk | Tjx e NltoTjr + ao,
®) 2 2 2
ol +Tjk(o; +2047) +04].
Then, the maximum likelihood estimate of 7 is
0
DY Z§:1 S TikYijk
= K <2
2k=1 2j=1 Tjkn ji
T T DA A - T Y
21521 2?21(1 - Tjk)”jk

which is identical to our design-based estimator when
the within-pair cluster sizes are the same. In simula-
tions, we find that this estimator is quite similar to the
design-based estimator even when the within-pair clus-
ter sizes are different.

3.3 The Model with Covariates

Consider a generalized version of the model in Sec-
tion 3.2 with a covariate:
Yijk = ok + g(X ) B + w Ty + €ijk,
(10) id
where €;ji =N, o2,
where g(-) is an assumed function specified as part of
the model and (tx, ag) is distributed as the bivariate
normal in equation (7). Hill and Scott (2009) consider

a special case of this model with a post-treatment co-
variate [see equation (5)], such that

eXji) =g(Xjx(Tjx)) = g(Y.jx(0))
= g(Y1x(0) + Tjxdk + k),

and with the linear functional form restriction,
g(x) =x.

(11)

If we estimate this general model using Hill and
Scott’s post-treatment covariate, the crucial question is
what quantity is being estimated. We denote this esti-
mand as t* and characterize the difference between it
and the average treatment effect (under this model) as
follows (see Rosenbaum, 1984):

" — E(1y)
=E{EYiji | Tix=1, X )

(12)

—EYijp | Tk =0, X))} — E(m),
a3) IE{E(Yijk|Tjk=1,Xjk(l))

—E(Yijk | Tjx =0, Xjx(0))} — E (),
(14 = E{g(Y.1£(0) + & + ¢jk)

—g(Y1k(0) + ¢jx) ) B-

The model dependence of Hill and Scott’s specifica-
tion can be seen in the last line: When g(x) = x as
they assume, then the last line equals 0 and discrepancy
between the estimand and the quantity of interest van-
ishes. However, if g(-) is not a linear function, then the
quantity being estimated by this model, t*, does not
in general equal the average treatment effect, that is,
E(71). The degree of discrepancy thus solely depends
on the functional form assumption, which of course is
a clear case of model dependence.

3.4 Simulations

We perform two simulations which are based on, but
not identical to, Hill and Scott’s simulation setup. Our
goal in this section is to offer a more general illustration
of model dependence than in Hill and Scott’s setup.
To do so, in both simulations, we correct the random-
ization failure by properly randomizing the treatment
and address the dvivide-by-zero problem by using a
left-truncated normal distribution (instead of a normal
distribution without truncation) with a truncation point
of 2. We then examine the consequence of adjusting
for the post-treatment variable (the first simulation) as
well as the pre-treatment variable (the second simula-
tion). We run our simulation for 2,000 iterations; de-
tails appear in our replication data archive (Imai et al.,
2009a).

For the first simulation, we set g(Xjx) =
log(Y.1x(0)) + njx if Tjx = 0 and g(Xjx) =

exp(Y 2 (0)) + njx if Tje = 1, where nj "= N(0,2),
the values of which are fixed over simulations. The re-
sults of this first simulation appear in the left column of
Figure 1. The horizontal axis for each graph is the stan-
dard deviation of added (post-treatment) imbalance,
which is denoted by os (see Section 3.1). We present
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FIG. 1. Model dependence. For the design-based (solid), model-based (dashed) and pre-test (dotted) estimators, we present the bias (top
row), root mean square error (middle row) and confidence interval coverage (bottom row). The left column demonstrates model dependence
from the simulation in Hill and Scott by changing only the model to add nonlinearity; the right column gives an example where even under
proper randomization inclusion of a covariate can worsen RMSE and the coverage probability.
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results for our design-based estimator (solid line), the
model-based estimator with a covariate (dashed line),
and—to evaluate whether it might be possible to test
one’s way out of the problems—a pre-test model-based
estimator using the likelihood ratio test to decide for
each simulation whether to include the covariate, as
done in Hill and Scott’s simulations (dotted line).

The estimated bias presented in the top left graph
shows that while our design-based estimator is approx-
imately unbiased, the model-based and pre-test estima-
tors are severely biased for a wide range of the simu-
lations. The variance of each of the estimators is rel-
atively small, and so with large bias the root mean
square error is mostly irrelevant, but it too indicates (in
the middle left graph) that the design-based estimator
is superior. The estimated coverage probability of the
95% confidence interval, displayed for the two estima-
tors in the bottom left graph, stays approximately at the
nominal level for our design-based estimator but is far
from valid over much of the range for the model-based
and pre-test approaches.

For our second set of simulations, we examine the
consequence of adjusting for the pre-treatment co-
variate using a model-based approach. We adopt a
data generating process similar to that of Hill and
Scott’s simulations, but use a different specification
for the pre-treatment cluster-level covariate; Xi; =
log(Y 1x(0)) + njx and Xox = exp(Y2%(0)) + njks
where 7k L N(0,2). In addition, because many
community-based cluster-randomized experiments in
public health and education are forced to use as few
as 5 to 10 pairs, we reduced the sample size to twenty
clusters of average size 15.

The results from this second simulation appears in
the right column of Figure 1, again for design-based
(solid line), model-based (dashed) and pre-test (dot-
ted) estimtors. As expected, the top right graph shows
that all three estimators are approximately unbiased be-
cause we no longer adjust for post-treatment covariates
(although the bias is slightly smaller for the pre-test
and design-based estimators than the model-based ap-
proach). The middle right graph shows that the design
based estimator has uniformly lower root mean square
error than the other two approaches. The bottom right
graph shows that our design-based approach produces
approximately correct coverage across varying levels
of within-pair imbalance, while the model-based and
pre-test estimators produce confidence intervals that
are somewhat too narrow.

3.5 How to Use Pre-Treatment Information

Introducing models into randomized experiments
can improve estimation or make it worse. Hill and
Scott have given examples where specific models out-
perform design-based estimators. With similar models
and data generation processes we show here that mod-
els can also under-perform relative to design-based es-
timators. Although diagnostic tests can sometimes help
an analyst choose the correct strategy from the data, the
differences can be subtle and in many situations, such
as the ones we illustrate here, standard tests cannot de-
tect model failures. None of these points are new, but
it is useful to have examples of each issue laid out with
the clarity this Symposium has made possible.

Given these issues, our recommendation, along with,
it seems, our discussants, is to avoid modeling choices
by using pair matching as part of the design of cluster-
randomized experiments on all available covariates
prior to randomization. This allows researchers to ob-
tain efficiency gains of modeling without risking the
statistical advantages of random assignment. If exact
pair matching is possible, then model dependence is
eliminated and the difference between many model-
based and design-based estimators will vanish. When
exact matching is not possible, then the user may
choose to introduce a model if the risks of that ap-
proach are not outweighed by the benefits of guar-
anteed unbiasedness due to randomization. In many
cases, such as with noncompliance and missing data,
models may be unavoidable.

4. CONCLUDING REMARKS

We developed the arguments, methods and evidence
for our article in the context of a large randomized
study of the Mexican universal health care system,
Seguro Popular (King et al., 2007, 2009). Using the
matched pair design for cluster randomization and our
design-based statistical methods means that we were
able to save a great deal of money and produce far
more informative causal effects without risky assump-
tions. As our discussants have made clear, these results
should be widely applicable, and the matched pair de-
sign should be used whenever feasible. Fortunately, in
cluster-randomized studies, matching clusters in pairs
usually is feasible, at least much more so than for
some classes of unit-randomized studies. As our con-
tent analysis of the scholarly literature shows, there is
much room for improvement in the practice of exper-
imental design; this symposium offers a clear path to
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saving research resources and unearthing far more in-
formation, in cluster randomized experiments, than has
been understood heretofore.

We thank our discussants again for their informative
contributions, and we look forward to many applica-
tions across fields of inquiry, as well as new research
that pushes forward experimental design in ways that
continue to make possible more scientifically valid and
efficient public policy evaluations.

APPENDIX: JOURNALS INCLUDED IN
CONTENT ANALYSIS

We included journals in the content analysis re-
ported in Table 1 if they published at least one cluster-
randomized trial during the study period, which was
2003-2009 for political science and 2006-2009 for the
others. The journals included are as follows.

Medicine and public health: American Journal of
Public Health, American Journal of Sports Medicine,
Annals of Internal Medicine, British Medical Jour-
nal, Journal of the American Medical Association,
Lancet, Medicine & Science in Sports & Exercise,
New England Journal of Medicine. Economics: Amer-
ican Economic Review, Econometrica, Journal of Po-
litical Economy, Journal of Policy Analysis and Man-
agement. Education: American Education Research
Journal, American Journal of College Health, Educa-
tional Evaluation and Policy Analysis. Political sci-
ence: American Behavioral Scientist, American Jour-
nal of Political Science, American Political Science Re-
view, American Politics Research, Annals of the Amer-
ican Academy of Political and Social Science, Com-
parative Political Studies, Electoral Studies, Journal of
Politics, Political Analysis, Political Psychology, Polit-
ical Research Quarterly, and PS: Political Science and
Politics.
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