
Supplementary Materials

S1. Proofs

We collect notation from the main text and introduce new notation:

mx(y, z) = E(Yi2 | Di = 1, Zi = z, Yi1 = y,Xi = x), qx(y, z) = Pr(Yi1 = y | Di = 1, Zi = z,Xi = x),

m∗x(y, z) = E(Yi2 | Di = 1, Zi = z, Y ∗i1 = y,Xi = x), q∗x(y, z) = Pr(Y ∗i1 = y | Di = 1, Zi = z,Xi = x),

px(y) = Pr(Yi1 = y | Y ∗i1 = y,Gi = c,Xi = x), ξx(y, z) = pr(Y ∗i1 = 1 | Zi = z,Di = 1, Yi1 = y,Xi = x),

rx(z) =
qx(1, 2− z){1− qx(1, 2− z)}

{px(1)− qx(1, 2− z)} · [qx(1, 2− z)− {1− px(0)}]
.

We will prove our results under the following weaker version of Assumption 1.

Assumption S1 (Strong Ignorability of Treatment Assignment).

Zi Di(z) |Xi,

Zi {Y ∗i1(z), Yi2(z, y∗1)} | Gi = c,Xi,

0 < Pr(Zi = z |Xi) < 1

for z = 0, 1, 2 and y∗1 = 0, 1.

S1.1. Proof of Theorem 1

We first consider the average spillover effect, by the law of total probability,

θ =
∑
x

{E(Yi2(1) | Gi = c,Xi = x)pr(Xi = x | Gi = c)− E(Yi2(0) | Gi = c,Xi = x)pr(Xi = x | Gi = c)}

=
∑
x

{E(Yi2 | Zi = 1, Gi = c,Xi = x)− E(Yi2(2) | Gi = c,Xi = x)} pr(Xi = x | Gi = c)

=
∑
x

{E(Yi2 | Zi = 1, Di = 1,Xi = x)− E(Yi2 | Zi = 2, Di = 1,Xi = x)}pr(Xi = x | Gi = c), (S1)
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where the second inequality follows from Assumption 3. From Assumption S1,

pr(Xi = x | Gi = c) =
pr(Gi = c |Xi = x)pr(Xi = x)

pr(Gi = c)

=
pr(Gi = c |Xi = x)pr(Xi = x)∑
x pr(Gi = c |Xi = x)pr(Xi = x)

=
pr(Di = 1 | Zi 6= 0,Xi = x)pr(Xi = x)∑
x pr(Di = 1 | Zi 6= 0,Xi = x)pr(Xi = x)

, (S2)

which simplifies to pr(Xi = x | Di = 1) if Assumption 1 holds. Plugging (S2) into (S1), we

can obtain the identification formula for θ, which becomes the same as the one in Theorem 1 if

Assumption 1 holds.

We then consider the average contagion and direct effects. We only need to identify E{Yi2(z, Y ∗i1(z′)) |

Gi = c,Xi = x} for all x and z, z′ = 0, 1. By the law of total probability, we have

E{Yi2(z, Y ∗i1(z′)) | Gi = c,Xi = x}

=

1∑
y∗1=0

E{Yi2(z, y∗i1) | Gi = c, Y ∗i1(z
′) = y∗1,Xi = x}Pr{Y ∗i1(z′) = y∗1 | Gi = c,Xi = x}

=
1∑

y∗1=0

E{Yi2(z, y∗1) | Zi = z′, Gi = c, Y ∗i1(z
′) = y∗1,Xi = x}Pr(Y ∗i1 = y∗1 | Zi = z′, Gi = c,Xi = x)

=
1∑

y∗1=0

E{Yi2(z, y∗1) | Zi = z′, Gi = c,Xi = x}Pr(Y ∗i1 = y∗1 | Zi = z′, Gi = c,Xi = x)

=
1∑

y∗1=0

E{Yi2(z, y∗1) | Zi = z,Gi = c,Xi = x}Pr(Y ∗i1 = y∗1 | Zi = z′, Gi = c,Xi = x)

=

1∑
y∗1=0

E{Yi2(z, y∗1) | Zi = z,Gi = c, Y ∗i1(z) = y∗1,Xi = x}Pr(Y ∗i1 = y∗1 | Zi = z′, Gi = c,Xi = x)

=
1∑

y=0

m∗x(y, z)q∗x(y, z′), (S3)

where the second and the fourth equalities follow from Assumption 1, and the third and the fifth

equalities follow from Assumption 2. Therefore, we need only to identify m∗x(y, z) and q∗x(y, z′) for

z, y = 0, 1. From Assumption 4, we can identify q∗x(y, 1) = qx(y, 1), and from Assumption 3, we
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can identify

q∗x(y, 0) = Pr(Y ∗i1 = 1 | Zi = 2, Gi = c,Xi = x) = qx(y, 2).

Finally, Assumption 4 implies m∗x(y, 1) = mx(y, 1), and by Assumptions 3 and 4, we have,

m∗x(y, 0) = E(Yi2 | Zi = 2, Gi = c, Y ∗i1 = y∗1,Xi = x) = mx(y, 2).

By plugging the identification formulas of q∗x(y, z) and m∗x(y, z) for z = 0, 1 into equation (S3), we

can obtain the identification formulas for the average contagion and direct effects. They become

the same as the identification formulas in Theorem 1 if Assumption 1 holds. �

S1.2. Proof of Theorem 2

First, because the expression of θ does not include Yi1, the identification formula does not change

without Assumption 4, i.e.,

θ =
∑
x

Pr(Xi = x | Gi = c) · {mx(1, 1)qx(1, 1) +mx(0, 1)qx(0, 1)−mx(1, 2)qx(1, 2)−mx(0, 2)qx(0, 2)}.

For z = 1, 2, by the law of total probability and Assumption 5,

qx(1, z) = px(1) · q∗x(1, z) + (1− px(0)) · {1− q∗x(1, z)}.

We then have

q∗x(1, z) =
qx(1, z)− (1− px(0))

px(1) + px(0)− 1
.

Again, by the law of total probability and Assumption 5, we have

mx(1, z) = m∗x(1, z) · ξx(1, z) +m∗x(0, z) · {1− ξx(1, z)},

mx(0, z) = m∗x(1, z) · ξx(0, z) +m∗x(0, z) · {1− ξx(0, z)},
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from which we obtain

m∗x(1, z) =
(1− ξx(0, z))mx(1, z)− (1− ξx(1, z))mx(0, z)

ξx(1, z)− ξx(0, z)
,

m∗x(0, z) =
ξx(1, z)mx(0, z)− ξx(0, z)mx(1, z)

ξx(1, z)− ξx(0, z)
.

From Theorem 1, for z = 0, 1,

τ(z) =
∑
x

{m∗x(1, 2− z)−m∗x(0, 2− z)}{q∗x(1, 1)− q∗x(1, 2)}Pr(Xi = x)

=
∑
x

mx(1, 2− z)−mx(0, 2− z)
ξx(1, 2− z)− ξx(0, 2− z)

· qx(1, 1)− qx(1, 2)

px(1) + px(0)− 1
· Pr(Xi = x),

whereas

ξx(1, 2− z)− ξx(0, 2− z) =
px(1) · q∗x(1, 2− z)

qx(1, 2− z)
− (1− px(1)) · q∗x(1, 2− z)

1− qx(1, 2− z)

=
{px(1)− qx(1, 2− z)} · q∗x(1, 2− z)

qx(1, 2− z)(1− qx(1, 2− z))

=
(px(1)− qx(1, 2− z)) · [qx(1, 2− z)− {1− px(0)}]

qx(1, 2− z)(1− qx(1, 2− z))
· 1

px(1) + px(0)− 1
.

Therefore, we have

τ(z) =
∑
x

[Pr(Xi = x | Gi = c) · rx(z){mx(1, 2− z)−mx(0, 2− z)} {qx(1, 1)− qx(1, 2)}].

For the average direct effect, we have

η(z) = θ − τ(1− z)

=
∑
x

Pr(Xi = x | Gi = c) ·
1∑

y=0

(
mx(y, 1)qx(y, 1)−mx(y, 2)qx(y, 2)

−rx(1− z)mx(y, 1 + z){qx(y, 1)− qx(y, 2)}
)]

=
∑
x

[
Pr(Xi = x | Gi = c) ·

1∑
y=0

(
{mx(y, 1)−mx(y, 2)}qx(y, 2− z)

−{1− rx(1− z)}mx(y, 1 + z){qx(y, 2)− qx(y, 1)}
)]
.
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Plugging (S2) into the above equations, we can obtain the identification formulas for the average

contagion and direct effects. They become the same as those in Theorem 2 if Assumption 1

holds.

S1.3. Proof of Corollary 1

We only need to drive the bounds for rx(z). Because px(1) + px(0) ≥ p and 0 ≤ px(1), px(0) ≤ 1,

we can obtain the range of (px(1), 1− px(0)) as,

1− px(0) ∈ [0, 2− p], px(1) ∈ [1− px(0) + p− 1, 1].

To obtain the bounds for rx(z), we first look into the range of the following function:

fa(x1, x2) = (a− x1)(a− x2), a ∈ [0, 1], x1 ∈ [0, 2− p], x2 ∈ [x1 + p− 1, 1].

We enumerate all the cases for different relative magnitude among 2− p, p− 1 and a.

Case 1: p ≥ 3/2

(a) When a < 2 − p, we have x2 < 1 − p ≥ a. fa(x1, x2) reaches its maximum {a − (2 −

p)}(a− 1) at (x1, x2) = (2− p, 1), and reaches its minimum a(a− 1) at (x1, x2) = (0, 1).

Thus, we have fa(x1, x2) ∈ [a(a− 1), {a− (2− p)})(a− 1)].

(b) When a = 2 − p, we have x2 < 1 − p ≥ a. fa(x1, x2) reaches its maximum 0 at

(x1, x2) = (2 − p, 1), and reaches its minimum a(a − 1) at (x1, x2) = (0, 1). Thus, we

have fa(x1, x2) ∈ [a(a− 1), 0].

(c) When 2 − p < a < p − 1, we have x2 < 2 − p < a < p − 1 ≤ x1. fa(x1, x2) reaches its

minimum a(a− 1) at (x1, x2) = (0, 1). If a ≤ 1/2, then fa(x1, x2) reaches its maximum

{a − (2 − p)}(a − 1) at (x1, x2) = (2 − p, 1) and if a > 1/2, then fa(x1, x2) reaches its

maximum {a− (p− 1)}a at (x1, x2) = (0, p− 1).

(d) When a = p − 1, we have x1 ≤ 2 − p ≤ a. fa(x1, x2) reaches its maximum 0 at

(x1, x2) = (0, p − 1), and reaches its minimum a(a − 1) at (x1, x2) = (0, 1). Thus, we

have fa(x1, x2) ∈ [a(a− 1), 0].

5



(e) When a > p− 1, we have x1 ≤ 2− p ≤ a. fa(x1, x2) reaches its maximum {a− (p− 1)}a

at (x1, x2) = (0, p− 1), and reaches its minimum a(a− 1) at (x1, x2) = (0, 1). Thus, we

have fa(x1, x2) ∈ [a(a− 1), {a− (p− 1)}a].

Case 2: p < 3/2

(a) When a ≤ p− 1, we have a ≤ x2. fa(x1, x2) reaches its maximum {a− (2− p)}(a− 1)

at (x1, x2) = (2− p, 1), and reaches its minimum a(a− 1) at (x1, x2) = (0, 1). Thus, we

have fa(x1, x2) ∈ [a(a− 1), {a− (2− p)})(a− 1)].

(b) When p− 1 < a < 2− p, fa(x1, x2) reaches its minimum a(a− 1) at (x1, x2) = (0, 1). If

a ≤ 1/2, then fa(x1, x2) reaches its maximum {a− (2−p)}(a−1) at (x1, x2) = (2−p, 1)

and if a > 1/2, then fa(x1, x2) reaches its maximum {a−(p−1)}a at (x1, x2) = (0, p−1).

(c) When a ≥ 2 − p, we have a ≥ x1. fa(x1, x2) reaches its maximum {a − (p − 1)}a at

(x1, x2) = (0, p − 1), and reaches its minimum a(a − 1) at (x1, x2) = (0, 1). Thus, we

have fa(x1, x2) ∈ [a(a− 1), {a− (p− 1)}a].

To obtain the results in Corollary 1, we examine the case when 2− p < qx(1, 2− z) < p− 1. From

the bounds for fqx(1,2−z)(px(1), 1− px(0)), we have rx(z) ∈ [1, ux(z)] where

ux(z) =

{
qx(1, 2− z)

qx(1, 2− z)− (2− p)
,

1− qx(1, 2− z)
(p− 1)− qx(1, 2− z)

}

According to Theorem 2,

τ(z) =
∑
x

Pr(Xi = x | Di = 1) · rx(z)Qx(z),

where Qx(z) = {mx(1, 2 − z) − mx(0, 2 − z)} {qx(1, 1)− qx(1, 2)}. Therefore, under 2 − p <

minx{qx(1, 2− z)} ≤ maxx{qx(1, 2− z)} < p− 1, the upper bound of τ(z) is

∑
x

Pr(Xi = x | Di = 1) · [I{Qx(z) ≥ 0}Qx(z)ux(z) + I{Qx(z) < 0}Qx(z)] , (S4)
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and the upper bound of τ(z) is

∑
x

Pr(Xi = x | Di = 1) · [I{Qx(z) ≥ 0}Qx(z) + I{Qx(z) < 0}Qx(z)]ux(z). (S5)

When Assumption S1 holds instead of Assumption 1, we can replace Pr(Xi = x | Di = 1) with (S2)

in (S4) and (S5) to obtain the bounds. For other cases with different relative magnitude among

p− 1, 2− p and qx(1, 2− z), we can obtain bounds for τ(z) using a similar technique.

S2. Computation

In this section, we provide the details of the EM algorithms for the the proposed sensitivity analyses.

We will give the algorithms under Assumption 1. Note that when sensitivity parameter is zero, we

obtain the point estimates under Assumptions 1–4. Recall that the following model is fit to the

units with Di = 1 (Gi = c).

Y ∗i1(z) = I(Ỹi1(z) > 0) where Ỹi1(z) = g(z,Xi) + εi1,

Yi2(z, y
∗
1) = I(Ỹi2(z, y

∗
1) > 0) where Ỹi2(z, y

∗
1) = f(z, y∗1,Xi) + εi2,εi1

εi2

 ∼N2


0

0

 ,Σ =

1 0

0 1


 ,

where g(·) and f(·) have linear forms

g(z,x) = α0 + αZz + xαX + zxαZX ,

f(z, y1,x) = β0 + βZz + βY y1 + βZY zy1 + xβX + zxβZX + y1xβY X .

DefineWi1 = (1, Zi,Xi, ZiXi)
>,Wi2 = (1, Zi, Y

∗
i1, ZiY

∗
i1,Xi, ZiXi, Y

∗
i1Xi)

>, α = (α0, αZ ,αX ,αZX)>,

and β = (β0, βZ , βY , βZY ,βX ,βZX ,βY X)>. Because Ỹi1(z) = Ỹi1, Y
∗
i1(z) = Y ∗i1 and Yi1(z) = Yi1 if

Zi = z. Similarly, Ỹi2(z, y
∗
1) = Ỹi2 and Yi2(z, y1) = Yi2 if Zi = z and Y ∗i1 = y∗1. Thus, we can rewrite
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our model using the observed data:

Y ∗i1 = I(Ỹi1 > 0) where Ỹi1 = W>
i1α+ εi1,

Yi2 = I(Ỹi2 > 0) where Ỹi2 = W>
i2β + εi2,εi1

εi2

 ∼N2


0

0

 ,Σ =

1 0

0 1


 .

S2.1. Sensitivity Analysis for Unobserved Confounding

We present the EM algorithm for the sensitivity analysis regarding unobserved confounding. We

write our model as,

Y ∗i1 = I(Ỹi1 > 0) where Ỹi1 = Wi1α+ εi1,

Yi2 = I(Ỹi2 > 0) where Ỹi2 = Wi2β + εi2,εi1
εi2

 ∼N2


0

0

 ,Σ =

1 ρ

ρ 1


 .

(S6)

The complete-data log-likelihood function is given by,

logLc(α,β) =
N∑
i=1

I{Di = 1} ·

[
−(Ỹi1 −W>

i1α)2

2(1− ρ2)
+
ρ(Ỹi1 −W>

i1α)(Ỹi2 −W>
i2β)

1− ρ2
− (Ỹi2 −W>

i2β)2

2(1− ρ2)

]
·I{Ỹi1(Yi1 − 0.5) > 0} · I{Ỹi2(Yi2 − 0.5) > 0}+ constant.

Let Oi be the observed data for unit i, i.e., Oi = (Yi1, Yi2, Zi, Di = 1,Xi)
>, and let ξ(k) be the

estimate of ξ after the k-th iteration. In the E-step, we need to compute:

E(Ỹi1 | Oi,α
(k),β(k)), E(Ỹi2 | Oi,α

(k),β(k)).

Because (Ỹi1, Ỹi2)
> | Oi,α

(k),β(k) follows a truncated bivariate Normal distribution with mean

(W>
i1α,W

>
i2β) and covariance matrix Σ2, we use R package tmvtnorm to compute them.
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In the M-step, we need to update the parameters based on

Ỹi1 = W>
i1α+ εi1, Ỹi2 = W>

i2β + εi2.

Because we know the covariance matrix of the error terms (εi1, εi2), we can transform the two

regression equations to

Σ
−1/2
2

Ỹi1
Ỹi2

 = Σ
−1/2
2

Wi1 0

0 Wi2


α
β

+ Σ
−1/2
2

εi1
εi2

 .

Then, we can use ordinary least squares regression to update the parameters.

After obtaining the maximum likelihood estimates of the parameters, we can then write,

P{Yi2(z, Y ∗i1(z′)) = 1 | Gi = c} =
∑
x

P{Yi2(z, Y ∗i1(z′)) = 1 |Xi = x, Di = 1}pr(Xi = x | Di = 1)

=
∑
x

[P{Yi2(z, 1) = 1, Y ∗i1(z
′) = 1 |Xi = x, Di = 1}+ P{Yi2(z, 0) = 1, Y ∗i1(z

′) = 0 |Xi = x, Di = 1}]

·pr(Xi = x | Di = 1)

=
∑
x

[P{εi2 > −f(z, 1,x), εi1 > −g(z,x) |Xi = x, Di = 1}

+P{εi2 > −f(z, 0,x), εi1 ≤ −g(z,x) |Xi = x, Di = 1}]pr(Xi = x | Di = 1).

We calculate the terms above using the cumulative distribution function of bivariate Normal dis-

tributions. Then, based on P{Yi2(z, Y ∗i1(z′)) = 1 | Gi = c}, we compute the estimated average

contagion and direct effects.

S2.2. Sensitivity Analysis for Additive Measurement Error

We assume

Yi1(z) = I{Ỹi1(z) + ζi > 0} and

 ζi

εi2

 i.i.d.∼ N2


0

0

 ,Σ =

 σ2 ρeσ

ρeσ 1


 .

where σ2 and ρe are pre-specified.

9



Therefore, we can write the model as:

Y ∗i1 = I(Y ′i1 − ζi > 0), Yi1 = I(Y ′i1 > 0) where Y ′i1 = W>
i1α+ ε′i1,

Yi2 = I(Ỹi2 > 0) where Ỹi2 = W>
i2β + εi2,

ζi ∼ N(0, σ2),

ε′i1
εi2

 ∼N2


0

0

 ,Σ1 =

1 + σ2 ρeσ

ρeσ 1


 .

(S7)

Treating Y ′i1, Y
∗
i1 and Ỹi2 as missing data, we can write the complete-data log-likelihood for the

units with Di = 1 as

logLc(ξ)

=

N∑
i=1

I(Di = 1) ·

[
− 1

1− ρ′2e

{
(Y ′i1 −W>

i1α)2

2(1 + σ2)
− ρ

′
e(Y

′
i1 −W>

i1α)(Ỹi2 −W>
i2β)√

1 + σ2
+

(Ỹi2 −W>
i2β)2

2

}

+h(Y ∗i1, Y
′
i1)

]
· I{Yi1(Y ′i1 − 0.5) > 0}I{Ỹi2(Yi2 − 0.5) > 0}+ constant,

where ρ′e = ρeσ/
√

1 + σ2, and h(Y ∗i2, Y
′
i2) is the likelihood that corresponds to pr(Y ∗i2 | Y ′i2) which

does not affect our parameter estimation.

We use the EM algorithm to obtain the MLEs of α and β. We ignore Di = 1 in the following

derivation. In the M-step, we update the parameters conditionally. In particular, we update α

conditional on β:

α(k+1) =

{
N∑
i=1

E(Wi1W
>
i1 | Oi, ξ

(k))

}−1{ N∑
i=1

E
(
Wi1Ỹ

′
i1 − ρ′e

√
1 + σ2Wi1(Ỹi2 −W>

i2β
(k)) | Oi, ξ

(k)
)}

=

{
N∑
i=1

E(Wi1W
>
i1 | Oi, ξ

(k))

}−1{ N∑
i=1

E
(
Wi1Ỹ

′
i1 − ρeσWi1(Ỹi2 −W>

i2β
(k)) | Oi, ξ

(k)
)}

(S8)

and update β conditional on α:

β(k+1) =

{
N∑
i=1

E(Wi2W
>
i2 | Oi, ξ

(k))

}−1{ N∑
i=1

E

(
Wi2Ỹi2 −

ρ′eWi2(Y ′i1 −W>
i1α

(k+1))√
1 + σ2

| Oi, ξ
(k)

)}

=

{
N∑
i=1

E(Wi2W
>
i2 | Oi, ξ

(k))

}−1{ N∑
i=1

E

(
Wi2Ỹi2 −

ρeσWi2(Y ′i1 −W>
i1α

(k+1))

1 + σ2
| Oi, ξ

(k)

)}
. (S9)
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Therefore, we need to calculate the following conditional expectations in the E-step:

E(Y ∗2i1 | Oi, ξ
(k)) = E(Y ∗i1 | Oi, ξ

(k)), E(Y ′i1Y
∗
i1 | Oi, ξ

(k))

E(Y ′i1 | Oi, ξ
(k)), E(Ỹi2Y

∗
i1 | Oi, ξ

(k)), E(Ỹi2 | Oi, ξ
(k)).

We calculate them separately. First, given Y ∗i1, Yi1 and Yi2, (Y ′i1 − ζi, Y ′i1, Ỹi2) follows a trivariate

truncated Normal distribution:
Y ′i1 − ζi

Y ′i1

Ỹi2

 ∼ TN3




Wi1α

Wi1α

Wi2β

 ,Σ1 =


1 1 0

1 1 + σ2 ρeσ

0 ρeσ 1


 ,

where the truncated intervals are given by Y ∗i1 = I(Y ′i1−ζi > 0), Yi1 = I(Y ′i1 > 0) and Yi2 = I(Ỹi2 >

0). By Bayes Theorem, we have

E(Y ∗2i1 | Oi, ξ
(k)) = pr(Y ∗i1 = 1 | Zi, Di = 1,Xi, ξ

(k))

=
pr(Y ∗i1 = 1, Yi1, Yi2 | Oi, ξ

(k))

pr(Y ∗i1 = 1, Yi1, Yi2 | Zi, Di = 1,Xi, ξ(k)) + pr(Y ∗i1 = 0, Yi1, Yi2 | Zi, Di = 1,Xi, ξ(k))
,

where pr(Y ∗i1, Yi1, Yi2 | Zi, Di = 1,Xi, ξ
(k)) can be calculated from R package tmvtnorm, which con-

tains functions for calculating cumulative distribution functions and expectations for multivariate

truncated Normal distributions. Using this package, we can then calculate

E(Y ′i1Y
∗
i1 | Oi, ξ

(k)) = E(Y ′i1 | Y ∗i1 = 1,Oi, ξ
(k)) · pr(Y ∗i1 = 1 | Oi, ξ

(k)),

E(Y ′i1 | Oi, ξ
(k)) = E(Y ′i1Y

∗
i1 | Oi, ξ

(k)) + E(Y ′i1(1− Y ∗i1) | Oi, ξ
(k)),

E(Ỹi2Y
∗
i1 | Oi, ξ

(k)) = E(Ỹi2 | Y ∗i1 = 1,Oi, ξ
(k)) · pr(Y ∗i1 = 1 | Oi, ξ

(k))

E(Ỹi2 | Oi, ξ
(k)) = E(Ỹi2Y

∗
i1 | Oi, ξ

(k)) + E(Ỹi2(1− Y ∗i1) | Oi, ξ
(k)).

Based on these conditional expectations, we can update the parameters using (S8) and (S9).
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After obtaining the maximum likelihood estimates of the parameters, we then write,

P{Yi2(z, Y ∗i1(z′)) = 1 | Gi = c} =
∑
x

P{Yi2(z, Y ∗i1(z′)) = 1 |Xi = x, Di = 1}pr(Xi = x | Di = 1)

=
∑
x

[P{Yi2(z, 1) = 1, Y ∗i1(z
′) = 1 |Xi = x, Di = 1}+ P{Yi2(z, 0) = 1, Y ∗i1(z

′) = 0 |Xi = x, Di = 1}]

·pr(Xi = x | Di = 1)

=
∑
x

[P{εi2 > −f(z, 1,x), εi1 > −g(z,x) |Xi = x, Di = 1}

+P{εi2 > −f(z, 0,x), εi1 ≤ −g(z,x) |Xi = x, Di = 1}]pr(Xi = x | Di = 1).

We calculate the terms above using the cumulative distribution function of bivariate Normal dis-

tributions. Then, based on P{Yi2(z, Y ∗i1(z′)) = 1 | Gi = c}, we compute the estimated average

contagion and direct effects.
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