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We begin by congratulating Yixin Wang and David Blei for
their thought-provoking article that opens up a new research
frontier in the !eld of causal inference. The authors directly
tackle the challenging question of how to infer causal e"ects
of many treatments in the presence of unmeasured confound-
ing. We expect their article to have a major impact by further
advancing our understanding of this important methodological
problem. This commentary has two goals. We !rst critically
review the deconfounder method and point out its advantages
and limitations. We then brie#y consider three possible ways to
address some of the limitations of the deconfounder method.

1. The Advantages and Limitations of the
Deconfounder Method

We !rst discuss several advantages o"ered by the deconfounder
method. We then examine the assumptions required by the
method and discuss its limitations.

1.1. The Deconfounder Method

Suppose that we have a simple random sample of n units from
a population. We have a total of m treatments, represented by
the m-dimensional vector, Ai = (Ai1, Ai2, . . . , Aim)!, for unit
i. For the sake of simplicity, we ignore the possible existence of
observed confounders Xi. But, all the arguments of this com-
mentary are applicable, conditional on Xi. The deconfounder
method consists of the following two simple steps. The !rst step
!ts the following factor model to the observed treatments,

p(Ai1, Ai2, . . . , Aim) =
∫

p(Zi)
m∏

j=1
p(Aij | Zi) dZi, (1)

where Zi = (Zi1, Zi2, . . . , Zik)! represents the k-dimensional
vector of latent factors.

Once the estimates of the factors Ẑi, which Wang and Blei
call the substitute confounders, are obtained, the second step
estimates the average causal e"ects of multiple treatments by
adjusting for these substitute confounders as follows,

τ (a, a′) = E{Yi(a) − Yi(a′)}
= E{E(Yi | Ai = a, Ẑi) − E(Yi | Ai = a′, Ẑi)}, (2)
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where a ∈ A and a′ ∈ A are the vectors of selected treatment
values with a %= a′ and A represents the support of Ai. In
practice, a regression model may be used to adjust for the
substitute confounders as demonstrated by Wang and Blei in
their empirical application.

The deconfounder method is attractive to applied researchers
for several reasons. First, it is a simple procedure based on
two classes of familiar statistical models—factor models and
regression models. Second, the method o"ers diagnostics in
observational studies with unmeasured confounding. Specif-
ically, researchers can check the conditional independence
among the observed treatments given the estimated factors,

Aij ⊥⊥ Ai,−j | Ẑi (3)

for any j = 1, . . . , m and Ai,−j represents all the treatments
except Aij. If this conditional independence does not hold, then
there may exist unobserved confounders that a"ect both Aij and
some of Ai,−j, yielding a biased causal estimate. As discussed
below, however, the lack of conditional independence may also
be due to the misspeci!cation of factor model, which, for exam-
ple, would be present if there are causal relationships among
treatments.

In sum, the deconfounder method proposes a simple solu-
tion to a long-standing problem of inferring causal e"ects of
multiple treatments in observational studies. Many analysts of
observational studies rely upon the assumption that the treat-
ments are unconfounded conditional on a set of observed pre-
treatment covariates. And yet, it is o$en di%cult to rule out
the possible existence of unobserved confounders. The decon-
founder method not only o"ers a new identi!cation strategy in
the presence of unobserved confounding, but also shows how
to check the validity of the resulting estimates under certain
assumptions.

1.2. Assumptions

What assumptions does the deconfounder method require?
Wang and Blei use a graphical model to represent the condi-
tional dependencies required by the deconfounder method.
Here, we reproduce the graphical model using the directed
acyclic graph (DAG) in Figure 1. In addition to the SUTVA
(Rubin 1990), this DAG implies several key assumptions.
First, the unobserved confounders Z should represent all
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Figure 1. Directed acyclic graph for the deconfounder method.

confounding variables such that the treatments are ignorable
given Z,

Yi(a) ⊥⊥ Ai | Zi (4)

for any a ∈ A. The assumption implies that the multi-cause
confounder Zi su%ces to adjust for the treatment-outcome con-
founding.

Second, the DAG also implies the following conditional inde-
pendence assumption,

Aij ⊥⊥ Ai,−j | Zi (5)

for any j = 1, 2, . . . , m. The assumption justi!es the factor
model in Equation (1). This assumption is violated if, for exam-
ple, there exists a causal relationship among treatments. In the
movie revenue application considered in the original article,
the assumption is violated if the choice of actor for the main
role (e.g., Sean Connery in a James Bond movie) in#uences the
selection of actor for another role (e.g., Bernard Lee as the char-
acter of M). This is an important limitation of the deconfounder
method as the problem may be common in applied research
with multiple treatments.

In addition, according to Wang and Blei, the deconfounder
method also requires the following overlap assumption that is

not explicitly represented in the DAG,
p(Ai ∈ A∗ | Zi) > 0 (6)

for all sets A∗ ⊂ A with p(Ai ∈ A∗) > 0. The assumption
implies that the choice of treatment values a may be constrained
when estimating E{Yi(a)}. If the selected value of a does not
belong to A∗, then the resulting causal inference will be based
on extrapolation.

Finally, the key identi!cation condition of the deconfounder
method is the assumption of “no unobserved single-cause con-
founder.” Wang and Blei formalize this assumption as the follow-
ing set of conditional independence assumptions (see De!nition
4 of the original article),

Yi(a) ⊥⊥ Aij | Vij, (7)
Aij ⊥⊥ Ai,−j | Vij (8)

for any j = 1, 2, . . . , m, a ∈ A, and some random variable Vij.
In addition, the authors require that these conditional indepen-
dence relations do not hold when conditioning on any proper
subset of the sigma algebra of Vij.

Unfortunately, these conditional independence assumptions
are not su%cient to eliminate the possible existence of unob-
served single-cause confounders. Figure 2 presents two exam-
ples, in which single-cause confounders exist, but Equations (7)
and (8) still hold. In addition, both cases can be reduced to the
DAG in Figure 1 where no single-cause unobserved confounder
exists by de!ning the unobserved multi-cause confounder as
Z = (Z1, Z2, Z3). The examples demonstrate that a single multi-
cause confounder can be decomposed into multiple single-cause
confounders, and that several single-cause confounders can be
combined into a single multi-cause confounder. Therefore, it
is di%cult to distinguish between single-cause and multiple-
cause confounders without the knowledge of causal relation-
ships among the variables.

We believe that it is important to develop the precise for-
mal statement of the no unobserved single-cause confounder
assumption. Such formalization allows us to understand how
this assumption enables the identi!cation of causal e"ects. In
addition, our discussion implies that assessing the credibility
of the assumption requires the scienti!c knowledge about the
underlying causal structure involving unobserved confounders.

Figure 2. Examples of unobserved single-cause confounders.
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1.3. Nonparametric Identi!cation

Wang and Blei establish the nonparametric identi!cation of the
average treatment e"ect given in Equation (2) under the afore-
mentioned assumptions in two steps. First, they show that a fac-
tor model of the observed treatments can be used to consistently
estimate the substitute confounder. Second, they show that given
the substitute confounder, the average treatment e"ects can be
nonparametrically identi!ed using Equation (2).

In an insightful paper, D’Amour (2019) demonstrates that
this two-step proof strategy leads to two problems for the decon-
founder method. First, there may be more than one factor
model that is compatible with the distribution of the observed
treatments. He provides an example where di"erent factor mod-
els that are compatible with the distribution of the observed
treatments under the structure of Figure 1 yield di"erent causal
estimates. Second, D’Amour shows that even if a factor model
is uniquely identi!ed, the nonparametric identi!cation is in
general impossible.

Moving beyond the counterexamples, we consider the iden-
ti!cation assumption for the factor model, discuss the role of
the substitute confounder, and assess the overlap assumption
required by the deconfounder method.

With respect to the identi!ability of factor models, Kruskal
(1977) and Allman, Matias, and Rhodes (2009) give the general
identi!cation assumptions when observed variables are discrete.
In this case, a crucial assumption is that the latent factor is corre-
lated with the observed variables. In our context, this means that
Z must causally a"ect each treatment Aj. In the causal inference
literature, this assumption is known as faithfulness (Spirtes et al.
2000), which states that there exists conditional independence
among variables in the population distribution if and only if it is
entailed in the corresponding DAG. Thus, although Wang and
Blei only discuss a set of conditional independence assumptions,
the deconfounder method requires the faithfulness assumption
to ensure the identi!ability of factor model.

Next, we discuss the role of the substitute confounder. In
the proof of the deconfounder method, Wang and Blei not only
assume that the true unobserved confounder Zi can be con-
sistently estimated, but also treat the estimated substitute con-
founder Ẑi as its true counterpart. This proof strategy ignores
the crucial fact that the (estimated) substitute confounder is a
function of observed treatments Ẑi = ĥM(Ai) = EM(Zi | Ai),
where ĥM indicates the fact that the substitute confounder is
estimated from the data and depends on the choice of factor
model and EM represents the expectation with respect to the !t-
ted factor model. We emphasize that the substitute confounder
Ẑi does not converge in probability to the true confounder
Zi, which in itself is a random variable. Rather, the substitute
confounder converges to a function of observed treatments. Yet,
this consistency result is required for the key results of the paper
(i.e., Theorems 6–8).

We also closely examine the identi!cation formula given in
Equation (2) by explicitly writing out the conditional expecta-
tion,

E{E(Yi | Ai = a, Ẑi)} =
∫

E(Yi | Ai = a, Ẑi)p(Ẑi)dẐi. (9)

Notice that Equation (9) does not follow unless the support of
p(Ẑi | Ai = a) is identical to the support of p(Ẑi) for any

given a ∈ A. Unfortunately, since the substitute confounder
is a function of the observed treatments, p(Ẑi | Ai = a) is
in general degenerate. The overlap assumption given in Equa-
tion (6) is not applicable because the assumption is about the
(true) unobserved confounders Zi rather than the (estimated)
substitute confounders, Ẑi. This means that we can only identify
E(Yi | Ai = a, Ẑi = z) = E(Yi | Ai = a) for the values of z
with z = ĥM(a), implying that only a certain set of causal e"ects
are identi!able.

In Theorem 6 of the original paper, Wang and Blei address
this problem by imposing two additional restrictions. First, it is
assumed that the outcome is separable in the following sense,

E{Yi(a) | Ẑi} = f1(a) + f2(Ẑi), (10)
E(Yi | Ai, Ẑi) = f3(Ai) + f4(Ẑi), (11)

where we use Ẑi instead of Zi to emphasize the fact that the sub-
stitute confounder is estimated. Although Equation (10) allows
us to write the average treatment e"ect as a function of treatment
values alone, that is, E{Yi(a) − Yi(a′)} = f1(a) − f1(a′), this
assumption is not particularly helpful for identi!cation since
conditioning on Ẑi is still required to identify the mean potential
outcomes. In addition, Equation (11) can be rewritten as E(Yi |
Ai) = f3(Ai)+f4(ĥM(Ai)) because Ẑi is a deterministic function
of Ai. This suggests that the validity of this restriction about the
outcome model critically depends on the choice of factor model.

The second restriction is that when the treatments are con-
tinuous, the substitute confounder is a piecewise constant func-
tion, that is, ∇afθ (a) = 0 where a parametric model is assumed
for p(Ẑi | Ai = a, θ) = δfθ (a) with a vector of parameters θ . A
similar restriction is proposed for the case of discrete treatments.
Since p(Ẑi | Ai = a, θ) = δĥM(a)

automatically holds, the
assumption is valid if ĥM(a) is a piece-wise constant function.
Thus, this second restriction also suggests that the choice of
factor model is critical for the validity of the deconfounder
method.

In sum, we conclude that the nonparametric identi!cation
is generally di%cult to obtain under the deconfounder method.
Because the substitute confounder is a function of observed
treatments, it leads to the violation of the overlap assumption.
Wang and Blei introduce two additional restrictions to address
this problem. However, these assumptions impose severe con-
straints on the choice of factor model as well as that of out-
come model. As a consequence, they may signi!cantly limit the
practical applicability of the deconfounder method. Even when
researchers carefully choose a factor model that satis!es these
restrictions, they may obtain causal e"ects only for a restricted
range of treatment values.

2. Alternative Approaches

We next consider three alternative approaches to the important
question of identifying the causal e"ects of multiple treatments
in the presence of unobserved confounders. The approaches in
this section will be based on Equation (4). Unlike the decon-
founder method, however, we will directly consider the iden-
ti!cation of the probability distributions involving the (true)
unobserved confounder p(Ai, Zi) and p(Yi | Ai, Zi) rather than
adopting Wang and Blei’s two-step proof strategy.
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2.1. Parametric Approach

Wang and Blei use parametric models in their empirical appli-
cations. Here, we consider a more general parametric approach.
A primary advantage of the parametric approach is simplicity,
whereas its major limitation is the required modeling assump-
tions that may not be credible in practice.

Suppose that there exists a uniquely identi!able factor model
for the treatments, and that the joint distribution of (A, Z) is
also identi!able. We assume the following additive model for the
outcome variable,

E{Yi(a) | Zi} =
m∑

j=1
βjbj(aj) + σ g(Zi),

where bj(·) and g(·) are prespeci!ed functions. Under this
setting, it can be shown that if σ is known, then the average
treatment e"ect is identi!able so long as (b1(Ai1), . . . , bm(Aim))

is linearly independent. In contrast, if σ is unknown, then the
average treatment e"ect is identi!able if (b1(Ai1), . . . , bm(Aim),
E{g(Zi) | Ai}) is linearly independent. This linear indepen-
dence assumption is analogous to the overlap assumption
discussed earlier, but the assumption can be tested using the
observed data.

To illustrate this parametric approach, consider an example,
in which we have three binary treatments m = 3 and one binary
latent factor Zi. Further assume that we have the following
outcome model,

E{Yi(a) | Zi} = β0 +
3∑

j=1
βjAij + σZi.

Now, consider a scenario, under which Aij’s are mutually inde-
pendent of one another given Zi. Then, the joint distribution
p(Ai1, Ai2, Ai3, Zi) = p(Zi)

∏3
j=1 p(Aij | Zi) is identi!able based

on the joint distribution of (Ai1, Ai2, Ai3) up to label switching
(see Kruskal 1977). Note that the average treatment e"ects are
invariant to label switching. Thus, under this condition, even if
σ is unknown, βj’s are identi!able so long as E(Zi | Ai1, Ai2, Ai3)
is not linear in (Ai1, Ai2, Ai3).

Next, consider a di"erent case shown as the DAG in Figure 3,
in which one treatment causally a"ects other treatments. In

Figure 3. Directed acyclic graph in the presence of causal relations among
treatments.

this case, we may focus on estimating the causal e"ects of
(A2, A3, A4) conditional on A1. We assume the following model
for the outcome variable,

E{Yi(a) | Zi} = β0 +
4∑

j=1
βjAij + σZi.

The joint distribution of Ai and Zi under Figure 3 is given by
p(Zi)p(Ai1 | Zi)p(Ai2 | Ai1, Z)p(Ai3 | Ai1, Zi)p(Ai4 | Zi). This
factorization is identi!able from the observed data (Allman,
Matias, and Rhodes 2009). Then, even when σ is unknown, we
can identify the parameters in the outcome model so long as
E(Zi | Ai1, Ai2, Ai3, Ai4) is not linear in (Ai1, Ai2, Ai3, Ai4). Using
these estimated parameters, we can obtain the estimates for the
causal e"ects.

2.2. Nonparametric Approach

In the causal inference literature, many scholars !rst consider
the problem of nonparametric identi!cation by asking whether
or not causal e"ects can be identi!ed without making any mod-
eling assumption. Only a$er the nonparametric identi!cation
of causal e"ects is established, researchers proceed to their
estimation and inference. Cox and Donnelly (2011) regarded
this approach as a general principle of applied statistics. They
state, If an issue can be addressed nonparametrically then it will
o!en be better to tackle it parametrically; however, if it cannot be
resolved nonparametrically then it is usually dangerous to resolve
it parametrically. (p. 96)

To enable the general nonparametric identi!cation of causal
e"ects in the current setting, we must introduce auxiliary vari-
ables. D’Amour (2019) considers the use of proxy variables.
Here, we examine an approach based on instrumental variables.
Figure 4 presents the DAG for this approach where W rep-
resents a set of instrumental variables. Instrumental variables
have the property that they are independent of the unobserved
confounders Z and in#uence the outcome Y only through the
treatments A.

For the sake of simplicity, we begin by considering the fol-
lowing separable model for the outcome,

E{Yi(a) | Zi} = q(a) + r(Zi),

Figure 4. Directed acyclic graph for the instrumental variable approach.
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where E{r(Zi)} = 0 without loss of generality. Since the instru-
mental variables satisfy E{r(Zi) | Wi} = E{r(Zi)} = 0, we
obtain,

E(Yi | Wi) = E{q(Ai) | Wi} =
∑

a∈A
q(Ai = a)p(Ai = a | Wi).

(12)

Since we can identify E(Yi | Wi) and p(Ai | Wi) from
the observed data, the causal e"ects are identi!able if we can
uniquely solve q(·) using Equation (12). Suppose that all the
treatments are binary and the instrumental variable is discrete
with L levels. Since there are 2m parameters in q(a), Equation
(12) implies that the identi!cation requires the 2m × L matrix
{p(Ai | Wi)} to be full-rank. This condition is analogous to
the overlap assumption discussed earlier and can be checked
using the observed data. The proposed approach here, however,
requires the instrumental variables to have more than 2m levels.
When m is large, it may be di%cult to !nd instrumental variables
that satisfy this condition.

The deconfounder method is closely related to the control
function methods developed in the econometrics literature. The
control function is a variable that, when adjusted for, renders
an otherwise endogenous treatment variable exogenous (see,
e.g., Wooldridge 2015). Imbens and Newey (2009) considered
the nonparametric identi!cation of the following nonseparable
triangular system of equations (as before, we omit observed
pretreatment confounding variables for simplicity),

Yi = s1(Ai, Zi), (13)
Ai = s2(Wi, Ui), (14)

where Zi and Ui are unobserved, Ai is the endogenous treat-
ment variable of interest, Wi is the instrumental variable with
Wi⊥⊥(Zi, Ui), and s2(·, ·) is a strictly monotonic function of Ui.
When Ai is a vector and Ui = Zi, Equations (13) and (14)
become identical to the setting of the deconfounder method.
Imbens and Newey show that the control function Ci is given
by the cumulative distribution function of Ai given Wi, that
is, Ci = FA|W(Ai, Wi). Like the substitue confounder, the
control function unconfounds the treatment variable, that is,
Yi(a)⊥⊥Ai | Ci. This is because Ci is a one-to-one function of
Ui, and Ai depends only on Wi conditional on Ui.

It is important to emphasize that the control function
methodology requires the overlap assumption that the support
of the marginal distribution of the control function, that is,
p(Ci), is the same as the support of the conditional distribution,
that is, p(Ci | Ai). However, unlike the case of the deconfounder
method, control function is a function of both treatment and
instrumental variables, making this overlap assumption more
likely to be satis!ed.

In sum, the nonparametric identi!cation of causal e"ects in
the current settings requires the existence of auxiliary variables.
Here, we consider an approach based on instrumental variables.
Even when such instrumental variables are available, certain
overlap assumptions are needed. This point is also clearly shown
for the control function methods that are closely related to the
deconfounder method. As we discussed, the overlap assump-
tions required for these instrumental variable methods are less
stringent than those required for the deconfounder method.

2.3. Stochastic Intervention Approach

Our discussion has identi!ed the overlap assumption as a
main methodological challenge for the deconfounder method.
Because the estimated substitute confounder itself is a function
of treatment variables, conditioning on the particular treatment
values alters the support of its distribution. The parametric
and nonparametric approaches introduced above address this
problem through the reliance on modeling assumptions and the
use of instrumental variables, respectively.

The !nal approach we consider is to change the causal quan-
tities of interest using the idea of stochastic intervention. Instead
of comparing two sets of !xed treatment values, we propose to
contrast the two di"erent distributions of treatments. In the
movie application of the original article, one may be interested
in comparing the revenue of a !lm featuring a typical cast for
action movies with that featuring common actors for Sci-Fi
movies. Stochastic intervention is a useful approach especially
in the settings where inferring the average outcome under the
!xed treatment values is di%cult. For example, Geneletti (2007)
applied it to mediation analysis, while Hudgens and Halloran
(2008) proposed an experimental design with stochastic
intervention to identify spillover e"ects. More recently, Kennedy
(2019) considers the incremental interventions that shi$
propensity score values to avoid overlap assumption.

Speci!cally, we focus on the average causal e"ects of dis-
tributions of treatments rather than the e"ects of treatments
themselves.

δ(p1, p0)

= E
{∫

Yi(a)p1(Ai = a)da −
∫

Yi(a)p0(Ai = a)da
}

, (15)

where p1 and p0 are the prespeci!ed distributions of treat-
ments to be compared. Various distributions can be selected
for comparison. For example, we may compare the conditional
distributions of treatments given the di"erent values of observed
covariates, that is, p1(Ai | Xi = x1) and p0(Ai | Xi = x2).
Moreover, if factors are interpretable, then we may choose the
conditional distributions given some speci!c values of the fac-
tors, that is, p1(Ai | Zi = z1) and p0(Ai | Zi = z2). Topic models
in the analysis of texts and ideal point models in the analysis of
roll calls are good examples of interpretable factor models (Blei,
Ng, and Jordan 2003; Clinton, Jackman, and Rivers 2004).

In the current setting, we may use the following estimator,

δ̂(p1, p0) =
n∑

i=1
Yi

p1(Ai) − p0(Ai)

p̂(Ai | Zi)
, (16)

where p̂(Ai | Zi) is the estimated factor model. For this estima-
tor, the required overlap assumption is that the support of pj(Ai)
is a subset of the support of p(Ai | Zi) for j = 0, 1. Researchers
can choose p1(Ai) and p0(Ai) so that this overlap assumption
is satis!ed. Furthermore, although the deconfounder method
is not applicable when one treatment causally a"ects another,
under the stochastic intervention approach one could model
causal relationships among treatments by specifying p(Ai | Zi)
provided that the model is identi!able. An example of such case
is given in Figure 3.
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3. Concluding Remarks

The article by Wang and Blei is an important contribution to the
causal inference literature because it opens up a new research
frontier. The authors study a relatively unexplored question of
how to infer the causal e"ects of many treatments in the pres-
ence of unobserved confounders. The deconfounder method
provides a novel and yet intuitive approach using familiar sta-
tistical models. A key insight is that under certain assumptions,
the factorization of treatments can yield a substitute confounder
as well as a practically useful diagnostic tool for checking the
validity of the resulting substitute confounder.

Although the deconfounder method has advantages, as !rst
pointed out by D’Amour (2019) and further elaborated in this
commentary, the method is not free of limitations. In par-
ticular, it cannot achieve nonparametric identi!cation with-
out additional restrictions. We emphasized the violation of the
overlap assumption due to the fact that the estimated substi-
tute confounder is a function of observed treatments. Wang
and Blei consider some restrictions on the outcome model
that may overcome this limitation and enable identi!cation.
However, such restrictions may severely limit the applicabil-
ity of the deconfounder method. More research is needed to
investigate the consequences of these restrictions in practical
settings.

We discussed three alternative approaches to the method-
ological problems of the deconfounder method. The !rst
approach is based on parametric assumptions and extend the
data analysis conducted in the original article. The second
approach relies upon the use of instrumental variables and
is related to the control function literature in econometrics.
The !nal approach considers an alternative causal estimand
based on stochastic intervention, which is particularly useful
in the settings with high-dimensional treatments. We expect
and hope that many researchers will follow up on the work
of Wang and Blei and develop new methods for estimating
the causal e"ects of multiple treatments in observational
studies.
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