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Principal Fairness for Human and
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Abstract.  Using the concept of principal stratification from the causal infer-
ence literature, we introduce a new notion of fairness, called principal fair-
ness, for human and algorithmic decision-making. Principal fairness states
that one should not discriminate among individuals who would be similarly
affected by the decision. Unlike the existing statistical definitions of fair-
ness, principal fairness explicitly accounts for the fact that individuals can be
impacted by the decision. This causal fairness formulation also enables on-
line or post-hoc fairness evaluation and policy learning. We also explain how
principal fairness relates to the existing causality-based fairness criteria. In
contrast to the counterfactual fairness criteria, for example, principal fairness
considers the effects of decision in question rather than those of protected
attributes of interest. Finally, we discuss how to conduct empirical evaluation

and policy learning under the proposed principal fairness criterion.
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Although the notion of fairness has long been studied,
the increasing reliance on algorithmic decision-making in
today’s society has led to the fast-growing literature on
algorithmic fairness (see, e.g., [2, 5, 10, 11, 29] and ref-
erences therein). In this paper, we introduce a new def-
inition of fairness, called principal fairness, for human
and algorithmic decision-making. Unlike the existing sta-
tistical fairness criteria [9, 18, 22, 36], principal fairness
incorporates causality into fairness. This causal fairness
formulation also enables online or post-hoc fairness eval-
uation and policy learning, going beyond evaluation based
on historical data for which most of the existing statistical
fairness criteria are designed.

Furthermore, we explain how principal fairness relates
to the existing causality-based fairness criteria. In particu-
lar, different from the counterfactual equalized odds crite-
ria, principal fairness considers joint potential outcomes,
and thus takes into account how the decision affects the
outcome [12]. Moreover, when compared to the counter-
factual fairness criteria [8, 28, 30, 37], principal fairness
focuses on the effects of decision in question rather than
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those of protected attributes of interest. We characterize
the formal relations between principal fairness and these
other fairness criteria.

Principal fairness states that one should not discrimi-
nate among individuals who would be similarly affected
by the decision. Consider a judge who decides, at a first
appearance hearing, whether to detain or release an ar-
restee pending disposition of any criminal charges (see
[20] for a related empirical study, which motivates this
example). Suppose that the outcome of interest is whether
the arrestee commits a new crime before the case is re-
solved. According to principal fairness, the judge should
not discriminate between arrestees if they would behave
in the same way under each of two potential scenarios—
detained or released. For example, if both of them would
not commit a new crime regardless of the decision, then
the judge should not treat them differently.

Therefore, principal fairness is related to individual
fairness [14], which demands that similar individuals
should be treated similarly. The critical difference, how-
ever, is that for principal fairness the similarity is mea-
sured based on the potential outcomes rather than ob-
served variables such as the observed outcome, covari-
ates or any function of them. Principal fairness can also
be seen as a causal formulation of disparate impact rather
than disparate treatment [3]. This means that a decision,
which is fair for one outcome, may not be fair for another
outcome.
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1. THREE EXISTING STATISTICAL FAIRNESS
CRITERIA

We begin by briefly reviewing the three existing statisti-
cal fairness criteria. Let D; € {0, 1} be the binary decision
variable and Y; € {0, 1} be the binary outcome variable of
interest. For the simplicity of exposition, we assume that
the outcome and treatment variables are both binary, but
the framework can be extended to other variable types.

We consider the following popular statistical fairness
criteria.

DEFINITION 1.1 (Statistical fairness). A decision-
making mechanism is fair with respect to the outcome of
interest ¥; and the protected attribute A; if the resulting
decision D; satisfies a certain conditional independence
relationship. Prominent examples of such relationships
used in the literature are given below:

(a) OVERALL PARITY: Pr(D; | A;) =Pr(D;)
(b) CALIBRATION: Pr(Y; | D;, A;) =Pr(Y; | D;)
(c) ACCURACY: Pr(D; | Y;, A;)) =Pr(D; | Y;)

In our criminal justice example, let D; = 1 represent
the judge’s decision to detain an arrestee, while we use
D; = 0 to denote the decision to release. In addition,
let Y; = 1 denote that the arrestee commits a new crime
whereas Y; = 0 represents no new crime being committed.
Suppose that the protected attribute is race. Then the over-
all parity implies that a judge should detain the same pro-
portion of arrestees across racial groups. In contrast, the
calibration criterion requires a judge to make decisions
such that the fraction of detained (or released) arrestees
who commit a new crime is identical across racial groups.
Finally, according to the accuracy criterion, a judge must
make decisions such that among those who committed (or
did not commit) a new crime, the same proportion of ar-
restees had been detained across racial groups.

Table 1 shows a numerical example of observed data,
which does not satisfy any of the three statistical fairness
criteria. For example, among those who committed a new
crime, the detention rate is much higher for Group A than
Group B, implying that the accuracy criterion is not satis-
fied. In addition, among those who are detained, the rate
of new crime is much higher for Group A than Group B,
failing to satisfy the calibration criterion.

As mentioned earlier, the major shortcoming of these
popular statistical fairness criteria is that it does not in-
corporate the causal impact of decision on the outcome
of interest. In the current example, these fairness criteria
do not take into account how the judge’s decision affects
the arrestee’s behavior. This also means that the existing
statistical fairness criteria are not applicable for an online
or post-hoc fairness evaluation although they may be used
for fairness evaluation based on historical data.

Next, we introduce the principal fairness criterion that
addresses this problem of the existing statistical criteria.

2. PRINCIPAL FAIRNESS

To formally define principal fairness, we follow the
standard causal inference literature and use Y;(d) to de-
note the potential value of the outcome that would be re-
alized if the decision is D; =d for d =0,1 (e.g., [15,
19, 31, 34]). Then the observed outcome can be written as
Y =Yi(D;).

Principal strata are defined as the joint potential out-
come values, that is, R; = (¥;(1), Y¥;(0)) [16]. Since any
causal effect can be written as a function of potential out-
comes, for example, Y; (1) — Y;(0) and Y;(1)/Y;(0), each
principal stratum represents how an individual would be
affected by the decision with respect to the outcome of in-
terest. In other words, the principal strata contain all the
information about how the decision impacts the outcome.
Unlike the observed outcome Y;, however, the potential
outcomes, and hence principal strata, represent the pre-
determined characteristics of individuals and are not af-
fected by the decision. Moreover, since we only observe
one potential outcome for any individual, principal strata
are not directly observable.

In the criminal justice example, the principal strata
are defined by whether or not each arrestee commits a
new crime under each of the two scenarios—detained
or released—determined by the judge’s decision. Specifi-
cally, the stratum R; = (0, 1) represents the “preventable”
group of arrestees who would commit a new crime only
when released, whereas the stratum R; = (1,1) is the
“dangerous” group of individuals who would commit a
new crime regardless of the judge’s decision. Similarly,
we may refer to the stratum R; = (0,0) as the “safe”
group of arrestees who would never commit a new crime,
whereas the stratum R; = (1, 0) represents the “backlash”
group of individuals who would commit a new crime only
when detained.’

Principal fairness implies that the decision is indepen-
dent of the protected attribute within each principal stra-
tum. In other words, a fair decision-maker can consider
a protected attribute only so far as it relates to potential
outcomes. We now give the formal definition of principal
fairness.

DEFINITION 2.1 (Principal fairness). A decision-
making mechanism satisfies principal fairness with re-
spect to the outcome of interest and the protected at-
tribute A; if the resulting decision D; is conditionally in-
dependent of A; within each principal stratum R;, that is,
Pr(D; | Ri, Ai) =Pr(D; | R;).

Note that principal fairness requires one to specify the
outcome of interest as well as the attribute to be protected.

1One could assume that an arrestee can never commit a new crime
when detained, implying the absence of the backlash and dangerous
groups. Here, we avoid such an assumption for the sake of generality.
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TABLE 1
A numerical example that satisfies none of the statistical fairness
criteria given in Definition 1.1

Group A Group B
Detained Released Detained Released
Y, =1 150 100 100 100
Y;=0 100 150 120 180
TABLE 2

Numerical illustration of principal fairness that is consistent with the
observed data in Table 1. Each cell represents a principal stratum
defined by the values of two potential outcomes (Y; (1), Y;(0)), while
two numbers within a cell represent the number of individuals
detained (D; = 1) and that of those released (D; = 0), respectively.
This example satisfies principal fairness because Groups A and B
have the same detention rate within each principal stratum

Group A
Y;(0)=1 Y;i(0)=0
Dangerous Backlash
Y;(H=1 Detained (D; = 1) 120 30
Released (D; =0) 30 30
Preventable Safe
Y;(1)=0 Detained (D; = 1) 70 30
Released (D; = 0) 70 120
Group B
Yi(0)=1 Y;(0)=0
Dangerous Backlash
Y () =1 Detained (D; = 1) 80 20
B Released (D; =0) 20 20
Preventable Safe
Y (1) =0 Detained (D; = 1) 80 40
e Released (D; = 0) 80 160

As such, a decision-making mechanism that is fair with
respect to one outcome may not be fair with respect to
another outcome. This may be an undesirable feature if
one’s goal is to develop a fair decision rule that is applica-
ble to multiple outcomes. Note that this definition is gen-
eralizable to any treatment and outcome variable types.
For example, if the treatment is a continuous variable,
there exist an infinite number of principal strata, but the
conditional independence relation in Definition 2.1 is still
well-defined.

Table 2 presents the numerical example of principal
strata that is consistent with the observed data example
shown in Table 1. In other words, for each group, if we
compute the observed outcome Y; = Y;(D;) based on Ta-
ble 2, then its distribution equals that of Table 1.

Recall that this example does not meet any of the three
statistical fairness criteria discussed above. The example,

however, satisfies principal fairness because the detention
rate is identical between Groups A and B within each
principal stratum. For instance, within the “dangerous”
stratum, the detention rate is 80% for both groups, while
it is only 20% for them within the “safe” stratum. Indeed,
the decision is independent of group membership given
principal strata, thereby satisfying principal fairness.

Principal fairness differs from these statistical fairness
criteria in that it accounts for how the decision affects
the outcome. In particular, although the accuracy criterion
resembles principal fairness, the former conditions upon
the observed rather than potential outcomes. This is why
these two criteria are different. For example, among those
who committed a new crime, the detention rate is much
higher for Group A than Group B, failing to meet the ac-
curacy criterion. The reason is that among these arrestees,
the proportion of “dangerous” individuals is greater for
Group A than that for Group B, and the judge is on aver-
age more likely to issue the detention decision for these
individuals.

Independent of our work but closely related to the idea
of principal fairness, Kallus and Zhou coarsen princi-
pal strata into two groups—the “responders” who bene-
fit from the treatment, that is, Y;(1) > Y;(0), and “anti-
responders” who do not, that is, ¥; (1) < Y;(0)—and con-
sider the conditional probability of decision given a pro-
tected attribute within each of the coarsened groups [23].
Principal fairness generalizes their work by considering
all principal strata.

3. RELATIONSHIP BETWEEN PRINCIPAL FAIRNESS
AND STATISTICAL FAIRNESS CRITERIA

How should we reconcile this tension between principal
fairness and the existing statistical fairness criteria? The
tradeoffs between different fairness criteria are not new.
As shown in the literature (e.g., [2, 9, 26]), it is gener-
ally impossible to simultaneously satisfy the three statis-
tical fairness criteria introduced in Definition 1.1. In some
cases, however, principal fairness implies all three statis-
tical fairness criteria. The following theorem provides a
sufficient condition.

THEOREM 3.1. Suppose that A; LL R;. Then princi-
pal fairness in Definition 2.1 implies all three statistical
definitions of fairness given in Definition 1.1.

The proof is given in the Appendix.

The condition states that different protected groups
have the same distribution of principal strata R;. In the
criminal justice example, this means that no group is in-
herently more dangerous than the other. This indepen-
dence differs from the equal base rate condition, that is,
Y; 1L A;, that has been identified in the literature as a suf-
ficient condition for simultaneously satisfying the three
statistical existing fairness criteria [26]. The equal base
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rate condition is based on observed outcomes, which may
be affected by the decision under consideration. In con-
trast, our sufficient condition, A; 1L R;, is about the in-
dependence between the protected attribute and principal
strata. Principal strata are based on potential outcomes,
which cannot be affected by the decision, and hence are
considered as the characteristics of arrestees. As a result,
A; 1L R; does not necessarily imply the equal base rate
condition, or vice versa. It can be shown, however, that
if principal fairness holds, A; LL R; also implies the equal
base rate condition. In other words, according to Theo-
rem 3.1, principal fairness represents an alternative con-
dition under which statistical fairness criteria hold simul-
taneously.

In many settings, it is reasonable to assume that the
protected attribute does not directly affect potential out-
comes. In the criminal justice example, being a member
of a particular racial group should not make one inher-
ently more dangerous. The protected attribute can, how-
ever, affect potential outcomes through other mediating
variables. In particular, the existence of racial discrimina-
tion can yield an association between race and various so-
cioeconomic variables, which in turn generates the depen-
dence between race and potential outcomes. For this rea-
son, the independence condition in Theorem 3.1 is likely
to be violated in many real-world applications.

Thus, we further investigate the connection between
principal fairness and the statistical fairness criteria in
more general settings without requiring the independence
condition A; 1l R;. Consider the following monotonicity
assumption.

ASSUMPTION 1 (Monotonicity).
Y;(1) <Y;(0) foralli.

Assumption 1 is plausible in many applications when
the effect of the decision on the outcome is nonpositive
for all individuals. In our criminal justice example, the as-
sumption implies that detention makes it no more likely
for an arrestee to commit a new crime in comparison to
release. Our theoretical results in the remainder of this pa-
per critically depend on Assumption 1 (we develop a sen-
sitivity analysis in Section 7 to assess the robustness of the
results to the potential violation of this assumption). Gen-
eralization of our results to nonbinary outcomes would
require an alternative assumption (see [33] for example).

The following theorem establishes the exact relation-
ship between Pr(D; | R;, A;) with Pr(D;, Y; | A;) under
Assumption 1.

THEOREM 3.2. Under Assumption 1, we have

PI‘(DL‘ =1 | R,‘ = (O, O), A,‘)

PI‘(D,' = O, Yi =0 | A,’)
Pr(R; = (0,0) | A)

Pr(D; = 1| R; = (0, 1), A;)
Pr(Y; =0 A;)
T Pr(R; = (0, 1) | Ay)
Pr(R; =(0,0) | A;)
T Pr(Ri =0, D) A)’
Pr(D; = 1| Ri = (1,1), A;)
Pr(Di=1,Yi=1]Aj)
T PR =(1,1) | A))

The proof is given in the Appendix (see [23] which de-
rived these identification results by combining R; = (0, 0)
and R; = (1, 1) into one group).

Theorem 3.2 shows that the conditional probability
of principal strata given the protected attribute, that is,
Pr(R; | A;), is the key factor in relating principal fairness
to the statistical fairness criteria. If A; is not independent
of R;, principal fairness and the statistical fairness def-
initions do not imply each other. When A; 1L R; holds,
however, principal fairness is equivalent to the statistical
fairness criteria under the monotonicity assumption. This
result is stated as the following corollary.

COROLLARY 1. Suppose that A; LI R; holds. Then,
under Assumptions 1, principal fairness is equivalent
to the three statistical fairness criteria given in Defini-
tion 1.1.

The proof is given in the Appendix.

4. COMPARISON WITH THE EXISTING
CAUSALITY-BASED FAIRNESS CRITERIA

We are not the first one to incorporate causality into the
study of algorithmic fairness. In this section, we explain
how principal fairness differs from the existing causality-
based fairness criteria.

4.1 Counterfactual Equalized Odds Criterion

The explicit conditioning of potential outcomes in fair-
ness criteria is not new. Independent of our work, Coston
et al. propose the following counterfactual equalized odds
criterion [12]:

(1) Pr(Di | Yi (0), Al') = PI'(D,' | Yl' (0))

The authors justify conditioning on the potential outcome
under the control condition, Y;(0), by arguing that it rep-
resents a “natural baseline” in most risk assessment set-
tings. Indeed, if researchers have historical data where the
outcome under the baseline condition is observed for all
units, that is, ¥; = Y;(0), then this criterion is equivalent
to the statistical accuracy criterion described above. Based
on such historical data, it is also easy to use the counter-
factual equalized odds criteria in fairness evaluation.
Unlike the counterfactual equalized odds criterion,
principal fairness conditions on principal strata, which is
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defined by all potential outcomes rather than a baseline
potential outcome alone. This means that in the case of a
binary treatment, principal fairness includes Y; (1) as well
as Y;(0). The key idea is that principal fairness considers
how the decision impacts individuals, requiring the com-
parison of all potential outcomes. In contrast, the counter-
factual equalized odds criterion focuses on the assessment
of risk, which is defined as the outcome in the absence of
an intervention.

The difference between the two criteria can be illus-
trated via the numerical example in Table 2. As explained
earlier, this example satisfies principal fairness, and yet it
fails to meet the counterfactual equalized odds criterion.
For example, among those who would commit a crime if
released, the detention rate is higher for Group A (19/29)
than Group B (16/26). The reason is that those who would
commit a crime if released include both the “dangerous”
and “preventable” individuals. The proportion of “danger-
ous” individuals is larger for Group A than that for Group
B, and the judge is more likely to impose a detention de-
cision for these individuals.

The counterfactual equalized odds criterion could be
viewed as a special case of principal fairness when the de-
cision is binary and the potential outcome under the treat-
ment condition Y; (1) is constant across individuals (this is
different from Assumption 1). For example, if no individ-
ual can commit a new crime when detained, the two crite-
ria are equivalent. In our empirical application, however,
we find that a new crime can be committed even when an
arrestee is detained [20]. In addition, there are many set-
tings where such an assumption is not appropriate. They
include the impacts of lending decisions on household fi-
nance, and the effects of admissions decisions on future
wages.

In general, the following theorem establishes a suffi-
cient condition under which principal fairness implies the
counterfactual equalized odds criterion.

THEOREM 4.1. Suppose that Y;(1)1LA; | Y;(0).
Then principal fairness implies the counterfactual equal-
ized odds criterion, that is, Pr(D; | Y;(0), A;) = Pr(D; |
Y;(0)).

The proof is given in the Appendix.

This conditional independence relation implies, in our
example, that among those who exhibit the same behav-
ior under the release decision, the crime rate under the
detention decision is identical for Groups A and B. This
condition is violated in many settings where the protected
attribute is associated with Y;(1) through variables other
than Y;(0). Thus, it is important to consider the joint po-
tential outcomes as done in principal fairness rather than
the baseline potential outcome alone.

4.2 Counterfactual Fairness

In the algorithmic fairness literature, counterfactual
fairness represents one prominent fairness criterion that
builds upon the causal inference framework. Kusner et al.
define the counterfactual fairness by considering the po-
tential decision when the protected attributes are set to
a fixed value [28]. Under their definition, a decision is
counterfactually fair if a protected attribute does not have
a causal effect on the decision. In the criminal justice ex-
ample, counterfactual fairness implies that the decision an
arrestee would receive if he/she were white should be sim-
ilar to the decision that would be given if the arrestee were
black.

Formally, we can write this criterion as

Pr{Di(a) = 1} = Pr{Di(a/) = 1}

for any a # a’ where D;(a) represents the potential de-
cision when the protected attribute A; takes the value a.
Below, we briefly compare principal fairness with coun-
terfactual fairness.

First, while principal fairness considers the potential
outcomes with respect to different decisions, counterfac-
tual fairness is based on the potential outcomes regarding
different values of the protected attribute. In the causal in-
ference literature, some advocated the mantra “no causa-
tion without manipulation” by pointing out the difficulty
of imagining a hypothetical intervention of altering one’s
immutable characteristics such as race and gender (e.g.,
[19]). Addressing this issue often requires one to consider
alternative causal quantities such as the causal effects of
perceived attributes [17] and stochastic intervention of
mediators [21]. In contrast, principal fairness avoids these
conceptual issues and can be evaluated under the widely
used unconfoundedness and monotonicity assumptions.

Second, while principal fairness is based on the con-
ditional independence between the realized decision D;
and the protected attribute A;, counterfactual fairness re-
quires the distribution of potential decision to be equal
across the values of the protected attribute. Counterfac-
tual fairness can be defined at an individual level, that is,
D;(a) = D;(a’) and can also be aggregated to any group.
Counterfactual fairness demands that, for example, an ar-
restee should receive the same decision even if he/she
were to belong to a different racial group. In contrast,
principal fairness, like existing statistical fairness crite-
ria, is fundamentally a group-level notion and cannot be
defined at an individual level. An important limitation,
therefore, is that ensuring group-level fairness may not
guarantee individual-level fairness.

Finally, recall that as shown in Corollary 1, principal
fairness implies all other statistical fairness criteria under
the assumption of A; 1L R;. However, even under this as-
sumption, principal fairness neither implies nor is implied
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by counterfactual fairness. As the following example il-
lustrates, a decision rule that directly depends on the pro-
tected attribute can satisfy principal fairness while failing
to meet counterfactual fairness. Alternatively, a decision
rule that does not depend on the protected attribute can
meet counterfactual fairness but may fail to meet princi-
pal fairness.

EXAMPLE. Consider a population characterized by
the following distributions of principal strata R € {(0, 0),
(1,0), (0, 1), (1, 1)}, the protected attribute A € {0, 1},
and the covariate X ~ Unif(0, 1),

Pr(A=1|X) =X,
Pr(R=(1,1)|A=a, X)
=Pr(R=(0,0)|A=a, X)=0.3,
Pr(R=(1,0)| A=a, X)
=Pr(R=(0,1)|A=a,X)=0.2
for a =0, 1. This implies A_LL R. Consider the decision

rule of the following form, D = 1{a X 4+ BA > 1}. Sup-
pose « =5/2 and B = —1. Then we have

Pr{D(1) =1} =0.2,
Pr{D(0) =1} = 0.6,
Pr(D=1|R=r,A=1)=Pr(X >0.8| A=1)=0.36,
Pr(D=1|R=r,A=0)=Pr(X >0.4| A =0)=0.36.

Thus, the decision rule violates counterfactual fairness
while satisfying principal fairness. Moreover, the three
statistical fairness criteria also hold since A1l R. In con-
trast, consider « = 5/2 and = 0. Then we have

Pr{D(1) =1} =Pr{D(0) =1} = 0.6,
Pr(D=1|R=r,A=1)=Pr(X >0.4|A=1)=0.84,
Pr(D=1|R=r,A=0)=Pr(X > 04| A =0)=0.36.

Thus, the decision rule violates principal fairness while
satisfying counterfactual fairness.

5. CONDITIONAL FAIRNESS CRITERIA

Although we have so far focused on fairness criteria
based on marginal distributions, policy makers and re-
searchers may be interested in evaluating fairness within
each subpopulation defined by a set of pretreatment co-
variates. The importance of such conditioning covariates
has been recognized in the algorithmic fairness litera-
ture. Specifically, even when a statistical fairness criterion
holds conditional on a set of covariates, the same criterion
may not be satisfied without those conditioning covari-
ates. The reason is that these conditioning covariates may
be correlated with the protected attribute itself. This prob-
lem is called inframarginality in the literature and applies

Fi1G. 1. Direct acyclic graph for the relationship between the pro-
tected attribute A; and principal strata R;. In the criminal justice
application, A; represents the race of an arrestee, R; is their risk
category (safe, preventable, dangerous and backlash), D; represents
the decision of judge, P; represents parents’ characteristics, which
include their attributes and socioeconomic status (SES), E; repre-
sents arrestee’s own experiences such as SES and H; represents his-
torical processes. Finally, Y; is the indicator of committing a new
crime, which is a deterministic function of judge’s decision D; and
risk category R;. The conditional independence R; 1LA; | W; holds
with W; = (H;, P;, E;).

to all statistical fairness criteria including principal fair-
ness [11]. The inframarginality problem simply reflects an
unavoidable fact that conditional independence does not
necessarily imply marginal independence and vice versa.

The following theorem shows that if the condition-
ing covariates eliminate the dependence between the pro-
tected attribute and principal stratum, then conditional on
these covariates, principal fairness implies all three statis-
tical definitions of fairness and the counterfactual equal-
ized odds criterion.

THEOREM 5.1. Suppose that there exist a set of vari-
ables W; such that A; LLR; | W; holds. Then, condi-
tional on W;, principal fairness implies the counter-
factual equalized odds criterion and all three statisti-
cal definitions of fairness. That is, Pr(D; | R;, W;, A;) =
PI‘(D,' | R,‘, W,‘) implies PI‘(D,’ | Y,' (0), W,‘, A,’) = PI‘(D,’ |
Yi(0), W;), Pr(D; | Wy, A;) = Pr(D; | Wy), Pr(Y; | D,
W;, A;)) =Pr(Y; | Di,W;), and Pr(D; | Y;, W;, A;) =
Pr(D; | Yi, W;). Moreover, if Assumption 1 also holds,
then principal fairness is equivalent to all three statisti-
cal definitions of fairness conditional on W;.

The proof is omitted because it is similar to those of
Theorems 3.1, 3.2 and 4.1 except that we condition on
W;.

The conditional independence A; 1L R; | W; means that
no racial group is inherently more dangerous than other
groups once we account for relevant factors W;. In a
causal model, the absence of direct effect of A; on R; im-
plies the existence of W; that satisfies A; 1L R; | W; where
W; can include mediators as well as common causes. The
lack of the direct effect of race can be viewed as an ax-
iomatic assumption that belonging to a particular racial
group does not make one inherently more dangerous than
members of other racial groups.

For illustration, consider the causal model, shown as
a directed acyclic graph in Figure 1, in the context of
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the criminal justice example. The race of an arrestee, A;,
is affected by his/her parents’ characteristics, which in-
clude their attributes and social economic status (SES),
P;. The arrestee’s own experiences, E;, are influenced by
their race, A;, their parents’ characteristics, P;, and the
historical processes such as slavery and Jim Crow laws,
H;, which also affect the parents’ characteristics.

Under this causal model, all of these three covariates
affect the risk category of arrestee (principal strata; i.e.,
safe, preventable, dangerous and backlash), R;, whereas
the judge’s decision, D;, is affected by the race, the expe-
riences and the historical processes. The key assumption
of the model is that the arrestee’s race does not directly
affect their risk category, as indicated by the absence of
a direct arrow between these two variables. As a result,
under this model, the arrestee’s race is conditionally in-
dependent of risk category, that is, R; LL A; | W;, where
W; = (H;, P;, E;). In other words, once we account for
these factors, no racial group has an innate tendency to be
dangerous relative to the other groups.

Theorem 5.1 shows that once we condition on W;
that satisfies A; LL R; | W;, principal fairness implies the
counterfactual equalized odds criterion and all statistical
fairness criteria. However, this result should not be used
to justify the appropriateness of conditioning on W;. The
reason is that the inclusion of conditioning covariates in
fairness criteria can lead to discrimination based on those
variables. If the conditioning covariates are good proxy
variables for the protected attribute, then any conditional
fairness criteria could lead to discrimination against those
groups who should be protected. Thus, the choice of con-
ditioning covariates must be made with special care [6,
25].

Finally, the conditioning covariates also play an impor-
tant role in counterfactual fairness as well but for a differ-
ent reason. Conditioning on covariates that are affected by
the protected attribute need to be done carefully to avoid
inducing a post-treatment bias (see, e.g., [25, 27]). To ad-
dress this issue, researchers have considered path-specific
effects through the framework of causal mediation analy-
sis (e.g., [8, 30, 32, 37]). In such an analysis, a key ques-
tion is which mediators should be included.

To further illustrate the difference between counterfac-
tual fairness and principal fairness with conditioning, we
again consider the causal model shown in Figure 1. Sup-
pose we would like to condition on E;. Then counterfac-
tual fairness requires that the race has no effect on the de-
cision other than through this variable. Because the race
can only affect the decision directly or through E;, coun-
terfactual fairness is violated conditional on E; due to the
existence of the direct effect. In contrast, principal fair-
ness may still hold conditional on E; if the association
from the direct effect of A; on D; cancels out with the
association from the common cause H;. Consistent with
Example 4.2, a decision rule that directly depends on the
protected attribute can satisfy principal fairness.

6. EMPIRICAL EVALUATION AND POLICY LEARNING
UNDER PRINCIPAL FAIRNESS

Finally, we discuss how to use the above theoretical
results in empirical studies. We first show how to em-
pirically assess the independence conditions in Theo-
rems 4.1 and 5.1, that is, Y; (1) 1L A; | ¥;(0) and A; LLR;.
To do this, we must identify the distribution of the prin-
cipal stratum within each group defined by the protected
attribute. We begin by introducing the following uncon-
foundedness assumption, which is widely used in the
causal inference literature.

ASSUMPTION 2 (Unconfoundedness).
X; for any d.

Yi(d)LLD; |

Assumption 2 holds if X; contains all the information
used for decision-making. In practice, if we are unsure
about whether the protected attribute is used for decision-
making, we may still include it in X; to make the uncon-
foundedness assumption more plausible [35].

The next theorem shows that under Assumptions 1 and
2, the evaluation of the independence relations, Y;(1)1L
A; | Yi(0) and A;_LLR;, reduces to the estimation of con-
ditional probability, Pr(Y; = 1 | D;, X;), from the ob-
served data.

THEOREM 6.1. Under Assumptions 1 and 2, we have
mi(A;)
mo(A;)’

Pr(R; = (0,0) | A;) = 1 — mo(A)),
Pr(R; = (0, 1) | A;) = mo(A;) —mi(A)),
Pr(R; = (1,1) | A;) =mi(Ay),

where mg(A;)) =E{Pr(Y; =1| D; =d,X;) | A;}.

Pr{Y;(1) =1 A;, Y;(0) =1} =

The proof is given in the Appendix.

Theorem 6.1 shows that we can empirically evaluate the
validity of Y;(1)1LA; | ¥;(0) and A; LLR; by checking
whether the distribution of principal strata R; depends on
the protected attribute A. The result also holds conditional
on any covariates that are included in X;.

Second, we consider the empirical evaluation of prin-
cipal fairness. Combining Theorems 3.2 and 6.1, the fol-
lowing corollary shows that the same assumptions used in
Theorem 6.1 are sufficient for identifying the conditional
distribution of decision D; given the principal strata and
the protected attribute. Using this conditional distribution,
one can empirically assess the principal fairness of the de-
cision.

COROLLARY 2. Under Assumptions 1 and 2, we have

Pr{Di =1 | R,’ = (O, 0), Ai}

PI‘(D,‘ =0, Yl' =0 | A,‘)

-1 i
1 —mo(A;)
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Pr{D; =1|R; = (0, 1), A;}
_ mo(A;) —Pr(Y; =1]A))
 mo(A) —mi(A)

Pr{Di =1|R;=(,1), Ai}
_Pr(D=1,Y;=1]A)

B mi(Ai)

The proof is given in the Appendix. The formulas also
hold conditional on any covariates that are included in X,
and thus allow for the evaluation of conditional principal
fairness.

Finally, we consider policy learning under principal
fairness. For simplicity, we focus on a deterministic pol-
icy D; =6(V;), where V; represents the covariates used
for making decisions. Suppose that the protected attribute
is binary. Then principal fairness requires the decision
rule §(V;) to satisfy the following equality constraint,
Pr{s(Vi) | Ri, A = 1} = Pr{6(V;) | R;, A; = 0}. This
constraint may be difficult to satisfy due to the fact that
R; is an unobserved variable. The following theorem ex-
presses this probability, Pr{é(V;) | R;, A; = 1}, in a dif-
ferent form that only depends on observed variables.

THEOREM 6.2. Suppose that Assumptions 1 holds
and the decision is a function of V;, that is, D; = 5(V ;).
Then we have

Pr{8(Vi)=1|R; =r, A;}
Vi, A;
=Bt s 4]
Efe,(Vi, Ai) | Ai}
for r = (0,0),(0,1) and (1,1) where e,(V;, A;) =
PI‘(Rl' =r | Vl', A,‘).

The proof is given in the Appendix.

The identification formulas for e, (W;, A;) are given in
Theorem 6.1. When we know which covariates are used
in the decision Dj;, these identification formulas provide
an alternative way to evaluate principal fairness in ad-
dition to Corollary 2. Specifically, Theorem 6.2 shows
that Pr(D; | R; =r, A;) is equal to the decision probabil-
ity within each protected group in a weighted population.
The weights depend on the proportions of principal strata
given the covariates and the protected attribute. Therefore,
to learn a policy that satisfies principal fairness, one could
first estimate e, (V;, A;) using Theorem 6.1 and then use
these estimated weights to augment the existing fairness-
aware policy learning approaches with the principal fair-
ness constraints (e.g., [1, 7, 24]).

7. SENSITIVITY ANALYSIS FOR MONOTONICITY

Without monotonicity, the proportions of principal
strata are not identifiable. This is why all results in Sec-
tion 6 rely on Assumption 1. In this section, we propose a
sensitivity analysis for this key identification assumption.

As the sensitivity parameter, we use the ratio between the
proportion of stratum (1, 0) and stratum (0, 1) conditional
on the covariates,

_ Pr(R; =(1,0)| X))
~ Pr(Ri =(0,1) | X;)

The sensitivity parameter characterizes the deviation
from monotonicity. If £ = 0, then monotonicity holds.
Kallus and Zhou develop a similar sensitivity analysis
but their sensitivity parameter is defined on the differ-
ence scale [23]. The following theorem generalizes The-
orems 3.2 and 6.1 and Corollary 2 using this sensitivity
parameter.

2 3

THEOREM 7.1. Suppose R; LI D; | X; holds, which is
a stronger version of Assumption 2. Using the sensitivity
parameter defined in equation (2) with a known & # 1, we
can write

Pr(D; = 1| Ri =1, A))
Pr(R; =r | D; =1, A)Pr(D; = 1| A;)
N Pr(R; =1 | A;)
CE{Pr(R; =r | D;=1,X;) | D; =1, Aj} Pr(D; = 1] A))
E{Pr(R; =7 | Xi) | Ai}
_ E{Pr(Ri =r |Xi) | Di =1, A} Pr(D; = 1] A;)
E{Pr(R; =7 | Xi) | Ai}
forr €{(0,0),(0,1),(, 1), (,0)}, where
Pr(R; = (0,0) | X;)
P =1D;=0.X;) —§Pr(¥; =1|D; = 1.X;)
1-¢& ’

=1

Pr(R; = (0,1) | X;)
CP(Y;=1|D;=0,X;)) —Pr(¥; =1|D; = 1.X;)
= T ,

Pr(Rl- :(1,1)|Xi)
_Pr(¥;=1|D; =1,X;) —&Pr(Y; =1| D; =0,X;)
= - i

Pr(R; = (1,0) | X;)
_ &P =11D; =0,X;) —EPr(Y; =1| D; =1, X))
= ¢ :

The proof is given in the Appendix. For policy learning
under principal fairness, the formula given in Theorem 6.2
still holds without monotonicity. Therefore, under equa-
tion (2), we can estimate e, (V;, A;) using the formulas of
Pr(R; =r | X;) given in Theorem 7.1.

8. CONCLUDING REMARKS

To assess the fairness of human and algorithmic
decision-making, one must consider how the decisions
themselves affect individuals. Such consideration requires
the notion of fairness to be placed in the causal inference
framework. In a separate work, we apply the idea of prin-
cipal fairness to the common settings, in which humans
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make decisions partly based on algorithmic recommen-
dations [20]. Since human decision-makers rather than
algorithms ultimately impact individuals, one must assess
whether algorithmic recommendations improve the fair-
ness of human decisions. We empirically examine this
issue through the experimental evaluation of the pretrial
risk assessment instrument widely used in the US crimi-
nal justice system.

The difference between principal fairness and counter-
factual equalized odds criterion sheds light on the pre-
dictive performance evaluation of algorithmic risk assess-
ments. The current literature focuses on the prediction ac-
curacy of Y;(0) when evaluating algorithmic fairness un-
der the counterfactual equalized odds criterion (e.g., [12,
29]). However, in general, Y; (0) alone does not fully char-
acterize counterfactual outcomes: individuals with the
same value of ¥;(0) may differ in the value of Y; (d) where
d # 0. Principal fairness generalizes counterfactual equal-
ized odds criterion by considering principal strata which
depend on all potential outcomes. In particular, the evalu-
ation of algorithmic decision or recommendation requires
one to condition on principal strata rather than the ob-
served outcome or a single potential outcome.

Although this paper focuses on the introduction of prin-
cipal fairness as a new fairness concept, much work re-
mains to be done. In particular, future work should con-
sider the development of algorithms that achieve principal
fairness. In a separate paper, we consider a methodolog-
ical framework for policy learning that involves the joint
potential outcomes [4]. Incorporating principal fairness as
a constraint within this framework may enable us to learn
fair policies from data.

Another possible direction is the extension of princi-
pal fairness to a dynamic decision-making system. As
previously pointed out [10, 13], real-world algorithmic
systems operate in complex environments that are con-
stantly changing, often due to the actions of algorithms
themselves. Therefore, an explicit consideration of the dy-
namic causal interactions between algorithms and human
decision-makers can help us develop long-term fairness
criteria.

Finally, but importantly, principal fairness does not
solve the big data’s disparate impact problem pointed out
by Barocas and Selbst [3]. Historical biases can affect
principal fairness through potential outcomes and data
used to estimate them. In particular, by conditioning on
potential outcomes, a principal fairness criterion may end
up inheriting historical biases that have existed in the
world and data derived from it. One way to address this is-
sue is to further adjust for such biases as discussed in Sec-
tion 5. The tasks of identifying and measuring these his-
torical factors, however, remain challenging and are likely
to require a better understanding of the underlying causal
structure. We leave this and other open problems to future
work.

APPENDIX: PROOFS
Proof of Theorem 3.1

We prove a more general version of Theorem 3.1 with
any variables V; in the conditioning set. That is, under
A; 1L R; | V;, principal fairness in implies all three statis-
tical definitions of fairness conditional on V;.

Because the observed stratum (D; = 1,Y; = 1) is a
mixture of principal strata R; = (1, 0), (1, 1), we have

Pr(D;=1,Y;=1|V;, A;)
=Pr(D;=1,R; = (1,0) | V;, A))
+Pr(D; =1, R =(1,1) | Vi, A))
=Pr(D; =1|R; =(1,0), V;, A;)
x Pr(R; = (1,0) | Vi, A;)
+Pr(D; =1| R =(1,1), Vi, A;)
x Pr(R; = (1,1) | Vi, A;)
=Pr(D; =1|R; =(1,0), V;)Pr(R; = (1,0) | V;)
+Pr(D; =1|Ri=(1,1),V;)Pr(Ri =(1,1) | V})
=Pr(D;=1,Ri=(1,0)| V;)
+Pr(D; =1, R =(1,1)| V;)
=Pr(D;=1,Y;,=1|V)),

where the third equality follows from principal fairness
and the assumption A; Ll R; | V;. Similarly, we can show

Pr(D;=d,Yi=y|V;,A)=Pr(D; =d,Yi=y|V;)

for d, y = 0, 1. This implies the three statistical defini-
tions of fairness.

Proof of Theorem 3.2

We prove a more general version of Theorem 3.2 with
any variables V; in the conditioning set. From Assump-
tion 1, we obtain

Pr(D; =1|R; =(0,0), V;, A;)

Pr(D; =0,R; =(0,0) | V;, A)
PR =(0,0)| Vi, A

Pr(D; =0,Y; =0|V;, A))

PR =0,0[ Vi, A)
Pr(D;=1|Ri=(1,1),V;, A)

_Pr(Di=1,Ri=(1,1)|V;, Aj)

- PrRi=(1L, 1| Vi, A)

_Pr(Di=1,Y;=1|V;, Aj)

 Pr(Ri=(1, DV, A)

and

Pr(D;=1|R;=(0,1),V;, A;)
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_Pr(Di=1,Ri =(0,1)|V;, Aj)
 Pr(Ri=(0,1)| Vi, A)
. Pr(D;=1|V;,A}))—Pr(D; =1,R; =(1,1) | V;, A})
- Pr(R; =(0,1)| V;, A)
Pr(D; =1,R; =(0,0)| V;, A)

 Pr(Ri=(0,1)| V;, Ap)
_Pr(Di=1,Y;=0]V;, A)
~ Pr(Ri=(0,1)| Vi, A)

_ Pr(R; =(0,0) | Vi, A) —Pr(D; =0,Y; =0| Vi, Aj)

Pr(R; =(0,1) | Vi, A)
_ Pr(Y;=0|V;, A) —Pr(R; =(0,0) | V;, A))
B Pr(R; =1|V;, A) '

Proof of Corollary 1

From Theorem 3.2, under A; 1L R;, principal fairness is
equivalent to

Pr(D; =0,Y; =0 A;))=Pr(D; =0,Y; =0),
Pr(Y; =0 A;) =Pr(¥; =0),
Pr(D; =1,Y = 1| A;) = Pr(D; =0, Y; =0),

which are equivalent to the three statistical fairness crite-
ria.

Proof of Theorem 4.1
By the law of total probability, we have
Pr{D; | Y;(0), A;}

= > Pr{Di| Yi(1) =y, Yi(0), A;}
y1=0,1

x Pr{Y; (1) = y1 | Y¥;(0), A;}

= Y Pr{D; | ¥;(1) = y1,Y;(0))
y1=0,1

x Pr{Y;(1) = y1 | Y: (0)}
=Pr{D; | Y:(0)},

where the second equality follows from principal fairness
and Y; (1) 1L A; | Y; (0).

Proof of Theorem 6.1
Under Assumption 1, we have

Pr(R; = (0,0) | A;)

3)
=Pr(Y;(0) =01 A;),
PI‘(R,‘ = (0, 1) | Al')
“)
=Pr(Y;(0) = 1] A;) = Pr(Y;(1) = 1] A;),
PI‘(R,' = (1, 1) | Ai)
&)

=Pr(Yi(1) =11 A)).

Under Assumption 2, we have
Pr{Yi(d)=y| A} =E{Pr(Y; =y | D; =d,X;) | A;},

where we assume X; contains A;. Plugging this into equa-
tions (3) to (5) yields the formulas in Theorem 6.1.

Proof of Corollary 2

This corollary follows from Theorem 3.2 and equa-
tion (8).

Proof of Theorem 6.2
From the law of total probability, we have
Pr{s(V))=1|Ri =r, A;}
=E{Pr(D; =1|V;,Ri=r,A) | Ri =1, A;}

=Y Pr(8(Vi)=1|V;=0v,4;)
v
X PI‘(Vi =0 | R,‘ =r, A,‘)

_ Z[Pr{S(V,-) =1 Vi=v,4)

Pr(Ri=r|V,=v,A)Pr(V; =v| Ai)]
X

PI'(Ri =r | Ai)
_ Lo Ele (Vi ADS(Vi) [ Vi = v, A} Pr(Vi = v | Ai)
Pr(R;i =r|A))

_ Ele,(Vi, ADS(Vi) | Ai}
~ Ele(Vi,AD | A}
_ E[ er(Vi, Aj)
Efe,(Vi, Ai) | Ai}
where can replace the summation with integral for con-
tinuous V;.

5V | Ai],

Proof of Theorem 7.1
By Bayes’ rule, we have
Pr(Di =1 | Ri =7, Ai)
_ Pr(R; =r| Di =1, A)Pr(D; = 1] A)i)
B Pr(R; =r| Ai)
. E{Pr(R;=r|D; =1,X;)D; =1, A;}Pr(D; = 1| A)i)
- E(Pr(R; =1 | X;) | A}
_ E{Pr(R; =7 | X))D; = 1, A} Pr(D; = 1 | A)i)
- E{Pr(Ri =7 | X;) | Ai}
where the second equality follows from the law of total
probability and the third equality follows from R; 1L D; |
X;. We then derive the formula for Pr(R; =r | X;). Under
equation (2) and Assumption 2, we have
PI'(YZ‘ =0 | Dl' = I,Xi)
=Pr(R; =(0,0) | X;) +Pr(R; = (0, 1) | X;),
Pr(Y; =01 D; =0,X;)
=Pr(R; = (0,0) | X;) + Pr(R; = (1,0) | X;)
= Pr(R,' =(0,0)] X,‘) + & PI‘(R,‘ =(0,1)] X,‘).
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Solving the equations, we obtain
Pr(R; = (0, 1) | X;)
_Pr(Y;=1|D;=0,X;)) —Pr(¥;=1|D; = 1,X))
= - ,

Pr(R; = (0,0) | X;)
Pr(Y;=1|D;=0,X;) = &Pr(Y;=1|D; =1,X;)
1—-£& '

=1

Therefore,
Pr(R; = (1,0) | X;)
_EP(Yi=11D; =0,X;) —=§Pr(Y; =1| Di =1,X;)
- T ,

Pr(R; = (1,1) | X;)
Py =1|D;=1,X;) —&Pr(Y; =1| D; =0,X,)
= T .
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