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Throughout this supplementary appendix, we use the following notation. For v =
(v1, ..., vd)

T ∈ Rd, and 1 ≤ q ≤ ∞, we define ‖v‖q = (
∑d

i=1 |vi|q)1/q, ‖v‖0 = |supp(v)|, where 15

supp(v) = {j : vj 6= 0} and |A| is the cardinality of a set A. Denote ‖v‖∞ = max1≤i≤d |vi|
and v⊗2 = vvT. For a matrix M , let ‖M‖max = maxjk |Mjk|, ‖M‖1 =

∑
jk |Mjk|, ‖M‖`∞ =

maxj
∑

k |Mjk|. If the matrix M is symmetric, then λmin(M) and λmax(M) are the mini-
mal and maximal eigenvalues of M . For S ⊆ {1, ..., d}, let vS = {vj : j ∈ S} and Sc be the
complement of S. For two positive sequences an and bn, we write an � bn if C ≤ an/bn ≤ 20

C ′ for some C,C ′ > 0. Similarly, we use an . bn to denote an ≤ Cbn for some constant
C > 0. A random variable X is sub-exponential if there exists some constant K1 > 0 such
that pr(|X| > t) ≤ exp(1− t/K1) for all t ≥ 0. The sub-exponential norm of X is defined as
‖X‖ψ1 = supp≥1 p

−1(E|X|p)1/p. A random variable X is sub-Gaussian if there exists some
constantK2 > 0 such that pr(|X| > t) ≤ exp(1− t2/K2

2 ) for all t ≥ 0. The sub-Gaussian norm 25

of X is defined as ‖X‖ψ2 = supp≥1 p
−1/2(E|X|p)1/p.

S1. ESTIMATION OF THE AVERAGE CAUSAL EFFECTS

S1·1. The Average Treatment Effect
For clarification purpose, we first present the complete algorithm for the inference on the aver-

age treatment effect. Recall that we have constructed the inverse probability weighted estimator 30

µ̂1 in the main text. Now we focus on how to estimate µ∗0 = E{Y (0)}.

Step 1: Define a generalized quasi-likelihood function as

Qn(β) = − 1

n

n∑
i=1

∫ βTXi

0

{ 1− Ti
1− π(u)

− 1
}
w1(u)du,
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where w1(u) is an arbitrary positive weight function. Compute the estimator

β̂ = arg min
β∈Rd

−Qn(β) + λ‖β‖1,

where λ > 0 is a tuning parameter.
Step 2: Define a weighted least square loss function using the treatment and control groups as

Ln(α) =
1

n

n∑
i=1

(1− Ti)w2(β̂TXi)(Yi − αTXi)
2,

where w2(·) is another positive weight function. Compute the estimator

α̃ = arg min
α∈Rd

Ln(α) + λ′‖α‖1,

where λ′ > 0 is a tuning parameter.
Step 3: Let S̃ = {j : |α̃j | > 0} denote the support of α̃ and XS̃ represent the corresponding

subset of X . We calibrate the initial estimator β̂S̃ to balance XS̃ . Specifically, we solve,

γ̃ = arg min
γ∈R|S̃|

‖gn(γ)‖22 where gn(γ) = n−1
n∑
i=1

{ 1− Ti
1− π(γTXiS̃ + β̂T

S̃c
XiS̃c)

− 1
}
XiS̃

We then set β̃ = (γ̃, β̂S̃c) and π̃i = π(β̃TXi).
Step 4: Estimate µ∗0 by the Horvitz-Thompson estimator µ̂0 = n−1

∑n
i=1(1− Ti)Yi/(1− π̃i).35

Then, we estimate the average treatment effect by µ̂ = µ̂1 − µ0.

Recall that K1(Xi) = E{Yi(1) | Xi} = α∗T1 X , K0(Xi) = E{Yi(0) | Xi} = α∗T0 X , and
∆K(Xi) = K1(Xi)−K0(Xi).

Assumption S1. Assume that ε0 = Y (0)− α∗T0 X and ‖ε0‖ψ2 ≤ Cε, where Cε is a positive
constant.40

Assumption S2. There exists a constant 0 < c0 < 1/2 such that π∗i ≤ 1− c0 for any 1 ≤ i ≤
n.

THEOREM S1. Under the same conditions in Theorem 1 and Assumptions S1, S2, then

µ̂− µ∗ =
1

n

n∑
i=1

[
Ti
π∗i
{Yi(1)−K1(Xi)} −

1− Ti
1− π∗i

{Yi(0)−K0(Xi)}+ ∆K(Xi)− µ∗
]

+ op(n
−1/2),

where max(‖β∗‖0, ‖α∗1‖0, ‖α∗0‖0) ≤ s. It implies n1/2(µ̂− µ∗)→d N(0, V ), where V is the
semiparametric asymptotic variance bound, i.e.,

V = E

[
1

π∗
E(ε21 | X) +

1

1− π∗
E(ε20 | X) + {∆K(X)− µ∗}2

]
.

Proof of this theorem is analogous to that of Theorem 1 and hence is omitted. As discussed in
Remark 1, the asymptotic variance can be obtained via the plug-in estimator. Similarly, Propo-
sitions 1 and 2 hold for µ̂ under either the misspecified propensity score or the misspecified45

outcome model. We omit the details.

S1·2. The Average Treatment Effect for the Treated
Next, we consider the estimation of the average treatment effect for the treated, which is

defined as τ∗ = E{Yi(1)− Yi(0) | Ti = 1}. Let τ∗1 = E{Yi(1) | Ti = 1} and τ∗0 = E{Yi(0) |
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Ti = 1}. By the law of total probability,

τ∗1 = E{TiYi(1) | Ti = 1} = E{TiYi(1)}/pr(Ti = 1).

Thus, a simple estimator of τ∗1 is

τ̂1 =

∑n
i=1 TiYi∑n
i=1 Ti

.

To estimate τ∗0 , we notice that

τ∗0 = E[E{Yi(0) | Ti = 1, Xi} | Ti = 1] = E[E{Yi(0) | Xi} | Ti = 1]

=

∫
E{Yi(0) | Xi}

pr(Ti = 1 | Xi)f(Xi)

pr(Ti = 1)
dXi =

E[π(β∗TXi)E{Yi(0) | Xi}]
pr(Ti = 1)

50

=
1

pr(Ti = 1)
E

{
π(β∗TXi)(1− Ti)Yi(0)

1− π(β∗TXi)

}
.

Hence, to accurately estimate τ∗0 , one has to develop an alternative set of the covariate balancing
equations. Recall that β̂ is defined in equation (7). For notational simplicity, we denote the penal-
ized least squared estimator for the control group by α̃with Ti replaced by 1− Ti in equation (9).
Recall that S̃ = {j : |α̃j | > 0} is the support of α̃. Then, we calibrate the initial estimator β̂S̃ to 55

balance X̄iS̃ = (1, XT

iS̃
)T. Specifically, we solve γ̃ = arg min

γ∈R|S̃|+1 ‖gn(γ)‖22, where

gn(γ) = n−1
n∑
i=1

{
Ti −

(1− Ti)π(γTX̄iS̃ + β̂T

S̃cXiS̃c)

1− π(γTX̄iS̃ + β̂T

S̃c
XiS̃c)

}
X̄iS̃ . (S1)

Then, we set π̃i = π(β̃TX̄i) with β̃ = (γ̃, β̂S̃c) and estimate τ0 by

τ̂0 =

∑n
i=1(1− Ti)r̃iYi∑n
i=1(1− Ti)r̃i

,

where r̃i = π̃i/(1− π̃i). The final estimator of the average treatment effect for the treated is
τ̂ = τ̂1 − τ̂0. The covariate balancing equations (S1) aim to balance the selected covariate X̄iS̃
reweighted by r̃i in the control group with X̄iS̃ in the treatment group. This proposal agrees
with the intuition originated from some of the recent work (Hainmueller, 2012; Zubizarreta, 60

2015). Similar to Theorem 1, the following proposition establishes the asymptotic normality and
semiparametric efficiency of the estimator τ̂ .

PROPOSITION S1. Under the same conditions in Theorem 1, we have,

τ̂ − τ∗ =
1

n

n∑
i=1

1

p
[Tiε1i − (1− Ti)r∗i ε0i + Ti{∆K(Xi)− τ∗}] + op(n

−1/2),

where p = pr(Ti = 1) and r∗i = π∗i /(1− π∗i ). This implies n1/2(τ̂ − τ∗)→d N(0,W ), where

W = p−2E

[
π∗E(ε21 | X) +

π∗2

1− π∗i
E(ε20 | X) + π∗{∆K(Xi)− τ∗}2

]
,

is the semiparametric asymptotic variance bound for τ (Hahn, 1998).

One future direction is to consider how to make the inference on average treatment effect for
the treated robust to model misspecification. 65
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S2. CONNECTION TO DOUBLY ROBUST ESTIMATOR

Recall that we estimate µ∗1 using the Horvitz-Thompson estimator. In the following, we com-
ment on the connection between the proposed estimator and the other commonly used estima-
tors. First, our estimator can be written as the Horvitz-Thompson estimator with the normalized
weights, which is known as the Hajek estimator,

µ̂1 =
1

n

n∑
i=1

TiYi
π̃i

=

∑n
i=1 TiYi/π̃i∑n
i=1 Ti/π̃i

,

The second equality follows because
∑n

i=1(Ti/π̃i − 1)/n = 0 so long as an intercept is included
in XiS̃ . Busso et al. (2014) showed that the normalized Horvitz-Thompson estimator tends to
be more stable than the unnormalized version numerically. Thus, we expect that the proposed
estimator has a better finite sample performance than the standard (i.e., unnormalized) Horvitz-70

Thompson estimator.
Second, our estimator can be also rewritten as an augmented inverse probability weighted

estimator with the linear outcome model (Robins et al., 1994),

µ̂1 =
1

n

n∑
i=1

TiYi
π̃i

=
1

n

n∑
i=1

TiYi
π̃i

+
1

n

n∑
i=1

(
1− Ti

π̃i

)
α̃TXi (S2)

where the second equality follows from two equalities in (12).
As a side remark, Robins et al. (2007) showed that the ordinary least squared estimator

µ̂OLS = n−1
∑n

i=1Xiα̂ can be also viewed as an augmented inverse probability weighted es-
timator, as long as α̂ solves the following equation

1

n

n∑
i=1

Ti
π̃i

(Yi − α̂TXi) = 0.

This is because

µ̂OLS =
1

n

n∑
i=1

Xiα̂+
1

n

n∑
i=1

Ti
π̃i

(Yi − α̂TXi),

where the last expression is exactly the augmented inverse probability weighted estimator.75

Finally, we note that when w1(u) = 1 and w2(u) = π′(u)/π2(u), the gradients of Qn(β) and
Ln(α) are related to the estimating equations proposed by Robins et al. (2007). Let us consider
the fixed dimensional case, and ignore all the penalization in our approach. One propensity score
estimator proposed by Robins et al. (2007) is to solve the estimating equation

1

n

n∑
i=1

{
Ti

π(XT
i β)
− 1

}
Xi = 0,

see section 3 of Robins et al. (2007). This is exactly our covariate balancing estimating equation.
Moreover, Robins et al. (2007) considered the extended regression model by adding the covariate
π̂i which is the estimated propensity score. Specifically, under the linearity assumption, they
assumed E{Yi(1)|Xi} = αTXi + φπ̂i with some extra unknown parameter φ. The unknown
parameters (α, φ) are estimated by the weighted least square estimator (α̂, φ̂), which solves the80
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following equation

1

n

n∑
i=1

Ti
π̂i

(Y − αTXi − φπ̂i)Wi = 0, (S3)

where Wi = (Xi, π̂i). To see the connection between (S3) and the gradient of the propensity
score adjusted least square loss Ln(α), consider the logistic regression model for the propensity
score. That is π(u) = exp(u)/{1 + exp(u)}. After some simple calculation, we get

w2(u) =
π′(u)

π2(u)
=

1− π(u)

π(u)
=

1

π(u)
− 1.

Thus, the gradient of Ln(α) denoted by∇Ln(α̂) is

1

n

n∑
i=1

Ti

( 1

π̂i
− 1
)

(Y − αTXi)Xi =
1

n

n∑
i=1

Ti
π̂i

(Y − αTXi)Xi −
1

n

n∑
i=1

Ti(Y − αTXi)Xi.

If the outcome model is correctly specified, we would expect that the estimator φ̂ in (S3) is close
to 0. Thus, we can ignore the term φπ̂i in (S3). Then (S3) implies that the estimator α̂ satisfies

∇Ln(α̂) ≈ 0.

The above derivation illustrates the connection between (S3) and ∇Ln(α̂). However, the above
derivation relies critically on the particular structure of the logistic regression π(u), and (S3)
could differ from the gradient of the propensity score adjusted least square loss in more general
settings. 85

S3. COMPARISON WITH ZHAO (2019)
In another recent work, Zhao (2019) proposed a generalized covariate balancing method based

on a class of scoring rules, which is similar to our generalized quasi-likelihood approach. Many
existing covariate balancing estimators can be treated as the primal or dual problems of their
optimization problem. Zhao (2019) studied the robustness of these estimators to misspecified 90

propensity score models under the constant treatment effect model E{Y (1)− Y (0) | X} = µ∗

for some constant µ∗. In contrast, our methodology allows for the heterogeneity of causal effects.
In addition, while our work mainly focuses on the high-dimensional settings, Zhao (2019) does
not provide statistical guarantees in such settings.

Both the proposed generalized quasi-likelihood function and Zhao (2016)’s “tailored loss 95

function” aim to estimate the propensity score model via the covariate balancing idea. How-
ever, they differ in some details. To be specific, by equations (8) and (9) in Zhao (2016) his score
function has the form

1

n

n∑
i=1

Xi(2Ti − 1)
G′′{pβ(Xi)}
`′{pβ(Xi)}

[Ti{1− pβ(Xi)}+ (1− Ti)pβ(Xi)] = 0, (S4)

where pβ(Xi) is the propensity score model. The parameter β in the propensity score model
can be estimated by the root of the above equation. When the average treatment effect is of 100

interest, the tailored loss function corresponds to G′′(p) = 1/{p2(1− p)2}. Moreover, if we
assume the logistic regression for the propensity score model, we have `(p) = logit(p) and thus
`′(p) = 1/{p(1− p)}. Plugging these formulas into equation (S4), we can show that the score
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function in Zhao (2016) is

1

n

n∑
i=1

Xi

{
Ti

pβ(Xi)
− 1− Ti

1− pβ(Xi)

}
= 0. (S5)

Thus, when the average treatment effect is of interest, the proposal in Zhao (2016) is the same as
the covariate balancing propensity score method in Imai & Ratkovic (2014) with only the linear
term X . As a comparison, our score equation (11) has the form

1

n

n∑
i=1

{
Ti

pβ(Xi)
− 1

}
Xi = 0,

where we use the notation pβ(Xi) for the propensity score model to match with (S4). These two105

score functions are different as well as the estimators of β. Indeed, Fan et al. (2016) investigated
the properties of the estimator, the root of the estimating equation (S5). They showed that the
inverse probability weighted estimator with the propensity score estimated by solving equation
(S5) is not consistent for the average treatment effect if the propensity score model is misspecified
and the outcome model is linear in X . Thus, the inverse probability weighted estimator is not110

doubly robust in this case. Thus, we cannot replace the generalized quasi-likelihood function in
Step 1 of our algorithm by the tailored loss function in Zhao (2016).

S4. PROOFS

S4·1. Proof of Theorem 1
For simplicity of the proof, we focus on the exact sparse case and ignore the approximation115

errors in the propensity score and outcome models. The treatment of the approximation errors is
similar to Belloni et al. (2017) and is not essential for the validity of the proposed method.

To start the proof of Theorem 1, we make the following minor modifications on the estimation
of γ in step 3. Define

γ̃ = arg min
γ∈Ω
‖gn(γ)‖22, where Ω = {γ ∈ R|S̃| : ‖γ − β̂S̃‖1 ≤ δ/ log n}

for some small constant δ > 0. Here, we introduce a parameter set Ω for γ, which guarantees the
existence of a minimizer γ̃ within the interior of Ω with probability tending to one. By using this
modification, we can avoid to impose further unnecessary technical assumptions. In practice, we120

find that without the modification the estimator γ̃ defined in step 3 is still very close to β̂S̃ . This
suggests that the estimator automatically lies within the set Ω. So, this modification has little
practical implication.

For notational simplicity, we denote prnf(X) = n−1
∑n

i=1 f(Xi), and we use C to denote a
generic constant, whose value may change from line to line.125

Denote Vi(u) = Tiπ
′(u)/π2(u)w1(u)− {Ti/π(u)− 1}w′1(u). Let S1 denote the support set

of β∗. Define the compatibility factor for Qn(β) in a small neighborhood of the true value as

κ = inf
{u∈Rn:|ui−XT

i β
∗|≤δ}

inf
{v∈Rd:‖vSc

1
‖1≤5‖vS1

‖1}

s1W (u, v)

‖vS1‖21
(S6)

whereW (u, v) = n−1
∑n

i=1 Vi(ui)(X
T
i v)2 and δ = Cλs{log(d ∨ n)}1/2 for some positive con-

stant C. Our first lemma shows that κ is lower bounded by a positive constant under the assump-
tions in Theorem 1.130
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LEMMA S1. Under the assumptions in Theorem 1, κ ≥ C > 0 with probability approaching
1.

Proof Proof of Lemma S1. Denote Vi = Vi(X
T
i β
∗). We have that

s1W (u, v)

‖vS1‖21
≥ W (u, v)

‖vS1‖22

≥
n−1

∑n
i=1 Vi(X

T
i v)2

‖vS1‖22
−
∣∣∣n−1

∑n
i=1{Vi(ui)− Vi}(XT

i v)2

‖vS1‖22

∣∣∣ := (i.1)− (i.2). 135

First, we consider the first term (i.1). Recall thatE(Vi|Xi) = π′(XT
i β
∗)w1(XT

i β
∗)/π(XT

i β
∗) ≥

C > 0. Let E = n−1
∑n

i=1 ViX
⊗2
i − E(ViX

⊗2
i ). Thus,

(i.1) ≥ E{Vi(XT
i v)2}

‖vS1‖22
− |v

TEv|
‖vS1‖22

≥ CE{(X
Tv)2}

‖vS1‖22
− |v

TEv|
‖vS1‖22

:= (i.1.1)− (i.1.2).

For the first term (i.1.1), we partition the set Sc1 as the union of K disjoint sets Sc1 = ∪Kk=1Jk,
where Jk contains the indices that has the m largest (in absolute value) entries of v outside
∪k−1
j=1Jj . We take m = s1 log n or the largest integer no greater than s1 log n. Then, |Jk| = m

and |JK | ≤ m. It has been shown that ‖vJk+1
‖2 ≤ m−1/2‖vJk‖1 for any 1 ≤ k ≤ K − 1. Then,

it implies
K∑
k=1

‖vJk‖2 ≤
‖vSc

1
‖1

m1/2
≤ 5‖vS1‖1

m1/2
≤ 5s

1/2
1 ‖vS1‖2
m1/2

=
5‖vS1‖2

(log n)1/2
.

This leads to

{E(XT
Sc
1
vSc

1
)2}1/2 = {E(

K∑
k=1

XT
Jk
vJk)2}1/2 ≤

K∑
k=1

{E(XT
Jk
vJk)2}1/2 ≤ C

K∑
k=1

‖vJk‖2 .
‖vS1‖2

(log n)1/2
,

where we use the fact that the largest eigenvalue of a submatrix of Σ with size m is bounded by
Assumption 5. Then, the term (i.1.1) can be bounded from below by C times

E(XT
S1
vS1 +XT

Sc
1
vSc

1
)2

‖vS1‖22
≥ 1

2

E(XT
S1
vS1)2

‖vS1‖22
−
E(XT

Sc
1
vSc

1
)2

‖vS1‖22
≥ 1

2
λmin(ΣS1S1)− C/ log n ≥ C,

as the smallest eigenvalue of a submatrix of Σ with size s1 is bounded from below by a constant
by Assumption 5. For (i.1.2), we have that

|vTEv| ≤ ‖v‖21‖E‖∞ ≤ 36‖vS1‖21‖E‖∞ ≤ 36s1‖vS1‖22‖E‖∞.

By Assumption 6, we can show that |Vi| ≤ C for some constant C. Thus, VjXijXik is sub-
exponential with ‖VjXijXik‖ψ1 ≤ C by Assumption 3. The Bernstein inequality for sub-
exponential random variables (Lemma K.2 of Ning & Liu (2017)) and the union bound yield
‖E‖∞ = Op((log d/n)1/2). Together with the sparsity assumption, we have

sup
{v∈Rd:‖vSc

1
‖1≤5‖vS1

‖1}
(i.1.2) = Op(s1{log(d ∨ n)/n}1/2)

Thus, we obtain that inf(i.1) ≥ C − op(1), where the inf is taken in the same set. 140
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In the following, we focus on (i.2). First, it is easily verified that Vi(ui) is locally Lipschitz in
a small neighborhood of XT

i β
∗ given Assumption 6. Then

sup
{ui∈R:|ui−XT

i β
∗|≤δ}

|Vi(ui)− Vi| ≤ Cδ.

Similar to the analysis for the lower bound of n−1
∑n

i=1(XT
i v)2 in term (i.1), we can also prove

that

sup
{v∈Rd:‖vSc

1
‖1≤5‖vS1

‖1}

n−1
∑n

i=1(XT
i v)2

‖vS1‖22
≤ 2λmax(ΣS1S1) + C/ log n ≤ C.

Thus, taking the maximum over u and v for the (i.2) term, we bound (i.2) from above by

sup
{v∈Rd:‖vSc‖1≤5‖vS‖1}

n−1
∑n

i=1(XT
i v)2

‖vS1‖22
Cδ ≤ {2λmax(ΣS1S1) + C ′/ log n}Cδ = op(1),

since δ = Cλs{log(d ∨ n)}1/2 = op(1) by the sparsity Assumption 4. Combining the bounds
for (i.1) and (i.2), we complete the proof. �

LEMMA S2. Under the assumptions in Theorem 1,

‖β̂ − β∗‖1 = Op

(
s1

{ log(d ∨ n)

n

}1/2
)
, prn[XT(β̂ − β∗)]2 = Op

(
s1 log(d ∨ n)

n

)
.

Proof Proof of Lemma S2. The proof contains two steps. In the first step, we apply a localiza-145

tion trick. DefineB = 20s1λ/(3κ) and t = B/(B + ‖β̂ − β∗‖1). Define β̄ = tβ̂ + (1− t)β∗ to
be a convex combination of β̂ and β∗. In the first step, we analyze the estimator β̄ and will prove
that

‖β̄ − β∗‖1 ≤ B/2. (S7)

Note that we trivially have ‖β̄ − β∗‖1 = B‖β̂ − β∗‖1/(B + ‖β̂ − β∗‖1) ≤ B. Since B = o(1)
by our sparsity assumption, we can see that by construction β̄ is already in a small neighborhood
of β∗. Thus, it is a localization step. The Hessian matrix of −Qn(β) is

−∇2Qn(β) =
1

n

n∑
i=1

{Tiπ′(XT
i β)w1(XT

i β)

π2(XT
i β)

− (Ti − π(XT
i β))w′1(XT

i β)

π(XT
i β)

}
X⊗2
i ,

which is semi-positive definite since we only consider the convex loss function, i.e., Qn is con-
cave. Thus,150

Qn(β̄)− λ‖β̄‖1 ≥ t{Qn(β̂)− λ‖β̂‖1}+ (1− t){Qn(β∗)− λ‖β∗‖1}
≥ Qn(β∗)− λ‖β∗‖1,

where the last step follows by the definition of β̂. By rearranging above inequality, we obtain

D(β̄, β∗) + λ‖β̄‖1 ≤ ∇Qn(β∗)(β̄ − β∗) + λ‖β∗‖1
where D(β̄, β∗) = Qn(β∗)−Qn(β̄) +∇Qn(β∗)(β̄ − β∗), which is nonnegative by the con-
cavity of Qn. This implies that under the event E1 := {‖∇Qn(β∗)‖∞ ≤ λ/3}, we have

D(β̄, β∗) + λ‖β̄‖1 ≤ ‖∇Qn(β∗)‖∞‖β̄ − β∗‖1 + λ‖β∗‖1 ≤ Bλ/3 + λ‖β∗‖1.
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We note that ∇Qn(β∗) = n−1
∑n

i=1Wi, where Wi = {Ti/π(XT
i β
∗)− 1}w1(XT

i β
∗)Xi. Since

{Ti/π(XT
i β
∗)− 1}w1(XT

i β
∗) is bounded by a constant, Wi is sub-Gaussian. Applying the Ho-

effding inequality and the union bound, we can show that the event E1 holds with probability at 155

least 1/(d ∨ n).
Recall that ‖β̄‖1 = ‖β̄S1‖1 + ‖β̄Sc

1
‖1 and β∗Sc

1
= 0. We have

D(β̄, β∗) + λ‖∆̄Sc
1
‖1 ≤ Bλ/3 + λ‖∆̄S1‖1,

where ∆̄ = β̄ − β∗. We prove (S7) by contradiction. If ‖β̄ − β∗‖1 > B/2, (S8) implies

D(β̄, β∗) + λ‖∆̄Sc
1
‖1 ≤ 2λ/3‖∆̄‖1 + λ‖∆̄S1‖1.

which can be rewritten as

D(β̄, β∗) + (1/3)λ‖∆̄Sc
1
‖1 ≤ (5/3)λ‖∆̄S1‖1. (S8)

Since D(β̄, β∗) ≥ 0, we obtain ‖∆̄Sc
1
‖1 ≤ 5‖∆̄S1‖1. This gives us the cone condition in

the compatibility factor. Note that with high probability maxi |XT
i ∆̄| ≤ maxi ‖Xi‖∞‖∆̄‖1 ≤

C{log(dn)}1/2B, where we use the tail bound for sub-Gaussian variables in the last step. Thus,
the event E2 := {maxi |XT

i ∆̄| ≤ C{log(dn)}1/2B} holds with probability tending to 1. Recall
that W (u, v) = n−1

∑n
i=1 Vi(ui)(X

T
i v)2. Under the event E2, by the mean-value theorem

D(β̄, β∗) ≥ inf
{u∈Rn:|ui−XT

i β
∗|≤C{log(dn)}1/2B}

W (u, β̄ − β∗)
2

≥ κ‖∆̄S1‖21
2s1

,

where κ is the compatibility factor defined in (S6). Plugging it into (S8), we obtain

κ‖∆̄S1‖21
2s1

≤ 5

3
λ‖∆̄S1‖1.

This gives us ‖∆̄S1‖1 ≤ 10s1λ/(3κ) = B/2. This leads to the contradiction. Thus, (S7) is true.
In the second step, we link β̄ back to β̂ and prove this lemma. Since ‖β̄ − β∗‖1 = B‖β̂ −

β∗‖1/(B + ‖β̂ − β∗‖1), if (S7) is true, this implies ‖β̂ − β∗‖1 ≤ B = 20s1λ/(3κ). Lemma S1
implies κ ≥ C > 0. With λ = C{log(d ∨ n)/n}1/2, we have

‖β̂ − β∗‖1 = Op

(
s1

{ log(d ∨ n)

n

}1/2)
.

Finally, we repeat the first step with β̄ replaced by β̂, we can derive ‖β̂ − β∗‖22 ≤ Cs1λ
2

and D(β̂, β∗) ≤ 100s1λ
2/(9κ) by (S8). Following the proof of Lemma S1, we can obtain

D(β̂, β∗) ≥ {C − op(1)}prn{XT(β̂ − β∗)}2. Thus,

prn{XT(β̂ − β∗)}2 = Op

(s1 log d

n

)
.

LEMMA S3. Under the assumptions in Theorem 1,

‖α̃− α∗‖1 = Op

(
(s1 ∨ s2)

{ log(d ∨ n)

n

}1/2
)
, prn{XT(α̃− α∗)}2 = Op

(
(s1 ∨ s2) log(d ∨ n)

n

)
.

The proof of this lemma is very similar to Lemma E.5 of Ning & Liu (2017). We omit the
details. For notational simplicity, we denote s = s1 ∨ s2. 160
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LEMMA S4. Under the assumptions in Theorem 1,

‖β̃ − β∗‖1 = Op

({s2 log(d ∨ n)

n

}1/2
)
, prn{XT(β̃ − β∗)}2 = Op

(
s log(d ∨ n)

n

)
.

Proof Proof of Lemma S4. The proof contains the following three steps:

(i) |S̃| ≤ Cs, where C is a positive constant.
(ii) ‖β̂S̃c − β∗S̃c‖1 = Op(s1{log(d ∨ n)/n}1/2), and prn{(β̂ − β∗)TS̃cXS̃c}2 = Op(s1 log(d ∨

n)/n).
(iii) ‖γ̃ − γ∗‖1 = Op({s2 log(d ∨ n)/n}1/2), and

prn{(γ̂ − γ∗)TXS̃}
2 = Op

(
s log(d ∨ n)

n

)
.

We first show (i). By the KKT condition of the penalized least square regression for α̃, we have165

prnTŵ2Xj(Y −XTα̃) = −λ′sign(α̃j) for any j ∈ supp(α̃), where ŵ2 = w2(β̂TX). Then, we
have

λ′|S̃|1/2 = ‖prnTŵ2XS̃(Y −XTα̃)‖2
≤ ‖prnTw2XS̃(Y −XTα̃)‖2 + ‖prnT (ŵ2 − w2)XS̃(Y −XTα̃)‖2, (S9)

where w2 = w2(β∗TX). For the first term,170

‖prnTw2XS̃(Y −XTα̃)‖2 ≤ ‖prnTw2XS̃ε1‖2 + ‖prnTw2XS̃X
T(α̃− α∗)‖2

≤ |S̃|1/2‖prnTw2XS̃ε1‖∞ + {prn[XT(α̃− α∗)]2}1/2‖prnTw2XS̃X
T

S̃
‖1/22

≤ C|S̃|1/2{log(|S̃| ∨ n)/n}1/2 + C‖prnTw2XS̃X
T

S̃
‖1/22 {(s1 ∨ s2) log(d ∨ n)/n}1/2, (S10)

where the last step follows from Lemma S3 and ‖prnTw2XS̃ε1‖∞ ≤
max|S|≤|S̃|maxj∈S ‖prnTw2Xjε1‖∞. Since Tw2 ≤ C, ‖ε1‖ψ2 ≤ Cε and ‖Xj‖ψ2 ≤ CX
for any 1 ≤ j ≤ d, we have ‖Tw2Xjε1‖ψ1 ≤ 2CCεCX . The Bernstein inequality for sub-
exponential random variables (Lemma K.2 of Ning & Liu (2017)) yields,

pr

(
1

n

n∑
i=1

Tw2Xijε1i > t

)
≤ 2 exp

{
−C ′′min

(
t2

4C2C2
εC

2
X

,
t

2CCεCX

)}
,

whereC ′′ is a universal constant. Applying the union bound argument and choose t = {log(|S̃| ∨
n)/n}1/2, we can obtain ‖prnTw2XS̃ε1‖∞ = Op({log(|S̃| ∨ n)/n}1/2). By equation (S10) and
λ′ � {log(d ∨ n)/n}1/2, we have

|S̃|1/2 ≤ C‖prnXS̃X
T

S̃
‖2(s1 ∨ s2)1/2.

Since the sparse eigenvalue is sub-linear (e.g., Yang et al. (2018)), there exists a constant C ′ > 0
such that ‖prnXS̃X

T

S̃
‖2 ≤ C ′ with probability tending to one. Thus, equation (S10) implies (i).175

The same argument can be applied to the second term in (S9). We arrive at the same conclusion.
To show (ii), note that ‖β̂S̃c − β∗S̃c‖1 ≤ ‖β̂ − β∗‖1 = Op(s1{log(d ∨ n)/n}1/2), where the

last step follows from Lemma S2. In addition, λmax(prnXS̃X
T

S̃
) = Op(1). To see this, by Weyl’s
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inequality,

|λmax(prnXS̃X
T

S̃
)− λmax(prXS̃X

T

S̃
)| ≤ ‖(prn − pr)XS̃X

T

S̃
‖2 ≤ max

|S|≤Cs2
‖(prn − pr)XSX

T
S‖2 180

≤ Cs2‖(prn − pr)XSX
T
S‖max = Op(s2(log s2/n)1/2),

where in the last step we use the Bernstein inequality for sub-exponential random variable and
the standard union bound argument. Since max|S|≤Cs λmax(prXSX

T
S ) ≤ 1/C by the eigenvalue

assumption, we obtain that λmax(prnXS̃X
T

S̃
) = Op(1). For the second result in (ii), we have

prn{(β̂ − β∗)TS̃cXS̃c}2 ≤ 2prn{(β̂ − β∗)TX}2 + 2prn{(β̂ − β∗)TS̃XS̃}
2 = Op(s1 log(d ∨ n)/n) 185

where the last step follows from Lemma S2, and

prn{(β̂ − β∗)TS̃XS̃}
2 ≤ ‖(β̂ − β∗)T

S̃
‖22λmax(prnXS̃X

T

S̃
) = Op(s1 log(d ∨ n)/n).

This completes the proof of (ii).
In the following, we aim to show (iii). For notational simplicity, let π = π(γ∗TXS̃ + β̂T

S̃cXS̃c)

and π̃ = π(γ̃TXS̃ + β̂T

S̃cXS̃c). By the definition of γ̃, we have∥∥∥∥prn

(
T

π
− 1

)
XS̃

∥∥∥∥2

2

≥
∥∥∥∥prn

(
T

π̃
− 1

)
XS̃

∥∥∥∥2

2

=

∥∥∥∥prn

(
T

π
− 1

)
XS̃

∥∥∥∥2

2

+

∥∥∥∥prn

(
T

π̃
− T

π

)
XS̃

∥∥∥∥2

2

+ 2prn

(
T

π
− 1

)
XS̃prn

(
T

π̃
− T

π

)
XS̃ . 190

The first inequality comes from γ∗ ∈ Ω, since ‖β̂ − β∗‖1 = Op(s1{log(d ∨ n)/n}1/2). This
yields ∥∥∥∥prn

(
T

π̃
− T

π

)
XS̃

∥∥∥∥2

2

≤ −2prn

(
T

π
− 1

)
XS̃prn

(
T

π̃
− T

π

)
XS̃ . (S11)

Let π′ denote the derivative of π evaluated at an intermediate value between γ∗TXS̃ + β̂T

S̃cXS̃c

and γ̃TXS̃ + β̂T

S̃cXS̃c . Then 195∥∥∥∥prn

(
T

π̃
− T

π

)
XS̃

∥∥∥∥2

2

=

∥∥∥∥prn
Tπ′

π̃π
X⊗2
S̃

(γ̃ − γ∗)
∥∥∥∥2

2

≥ ‖γ̃ − γ∗‖22λmin

(
prn

Tπ′

π̃π
X⊗2
S̃

)
≥ C‖γ̃ − γ∗‖22λmin

(
prnTX

⊗2
S̃

)
,

for some constant C > 0. The last step follows from π̃i ≤ 1 and πi ≤ 1 and π′i ≥ C, since

max
1≤i≤n

|π̃′i − π∗
′
i | ≤ max

1≤i≤n
{‖γ̃ − γ∗‖1‖XiS̃‖∞ + ‖β̂S̃c − β∗S̃c‖1‖XiS̃c‖∞} = op(1),

by the definition of Ω and the convergence rate of β̂. It is easily seen that

|λmin(prnTX
⊗2
S̃

)− λmin(prTX⊗2
S̃

)| ≤ Cs‖(prn − pr)TX⊗2
S̃
‖max = Op(s(log s/n)1/2).

Since min|S|≤Cs λmin(prTX⊗2
S ) ≥ c0C, we obtain that λmin(prnTX

⊗2
S̃

) is lower bounded by a
positive constant. This implies∥∥∥∥prn

(
T

π̃
− T

π

)
XS̃

∥∥∥∥2

2

≥ C‖γ̃ − γ∗‖22. (S12) 200
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Following the similar argument, we can show that the right hand side of equation (S11) is
bounded above by 2‖∆n‖2‖An‖2‖γ̃ − γ∗‖2, where

∆n = prn

(
T

π
− 1

)
XS̃ , An = prn

Tπ′

π̃π
X⊗2
S̃
.

Similarly, we can show that ‖An‖2 ≤ Cλmax(prnX
⊗2
S̃

) ≤ C ′ for some constants C,C ′ > 0. In
addition, we decompose ∆n = In + IIn, where

In = prn

(
T

π∗
− 1

)
XS̃ , IIn = −prn

Tπ′

ππ∗
XS̃X

T

S̃c(β̂ − β∗)S̃c ,

where similarly π′ is the derivative of π evaluated at some intermediate value. Thus, by the
Bernstein inequality and the union bound argument,

‖In‖2 ≤ |S̃|1/2
∥∥∥∥prn

(
T

π∗
− 1

)
XS̃

∥∥∥∥
∞

= Op({s log(s ∨ n)/n}1/2).

In addition,

‖IIn‖2 ≤ sup
‖v‖2=1

∣∣∣∣prn
Tπ′

ππ∗
vTXS̃X

T

S̃c(β̂ − β∗)S̃c

∣∣∣∣
≤ sup
‖v‖2=1

∣∣∣∣prn
Tπ′

ππ∗
(vTXS̃)2

∣∣∣∣1/2 ∣∣∣∣prn
Tπ′

ππ∗
{XT

S̃c(β̂ − β∗)S̃c}2
∣∣∣∣1/2

≤ Cλ1/2
max(prnXS̃X

T

S̃
) ·
∣∣∣prn{XT

S̃c(β̂ − β∗)S̃c}2
∣∣∣1/2 = Op({s1 log(d ∨ n)/n}1/2).

This implies ‖∆n‖2 = Op({s log(d ∨ n)/n}1/2). Combining with equations (S12) and (S11),
we obtain that

‖γ̃ − γ∗‖2 = Op({(s log(d ∨ n))/n}1/2),

and

‖γ̃ − γ∗‖1 ≤ Cs1/2‖γ̃ − γ∗‖2 = Op({(s2 log(d ∨ n))/n}1/2).

This completes the proof of (iii). Finally, we combine the results in (i), (ii) and (iii) to show the
desired result:

‖β̃ − β∗‖1 = ‖γ̃ − γ∗‖1 + ‖(β̃ − β∗)S̃c‖1 = Op

({s2 log(d ∨ n)

n

}1/2
)
,

and205

prn{XT(β̃ − β∗)}2 ≤ 2prn{(β̂ − β∗)TS̃cXS̃c}2 + 2prn{(γ̂ − γ∗)TXS̃}
2

= Op

(
s log(d ∨ n)

n

)
.

Finally, we start the proof of Theorem 1.

Proof Proof of Theorem 1. By the rearrangement of terms, we have

µ̂1 − µ∗1 = prn

[
T

π∗
{Y (1)−K1(X)}+K1(X)− µ∗1

]
+ I1 + I2,210
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where

I1 = prn

(
T

π̃
− T

π∗

)
{Y (1)−K1(X)}, I2 = prn

(
T

π̃
− 1

)
K1(X).

By (iii) in the proof of Lemma S4, we have that with probability tending to one γ̃ belongs to
the interior of Ω. The KKT condition implies {∂gn(γ̃)/∂γ}gn(γ̃) = 0. As seen in the proof of
Lemma S4, ∂gn(γ̃)/∂γ is invertible with probability tending to one. Thus, we have gn(γ̃) = 0,
and therefore

prn

(
T

π̃
− 1

)
α̃T

S̃
XS̃ = prn

(
T

π̃
− 1

)
α̃TX = 0.

Once we can show that

prn

(
T

π̃
− 1

)
XT(α̃− α∗) = op(n

−1/2), (S13)

it yields I2 = op(n
−1/2). To show equation (S13), by the Taylor theorem,∣∣∣∣prn

(
T

π̃
− 1

)
XT(α̃− α∗)

∣∣∣∣ =

∣∣∣∣prn

(
T

π∗
− 1

)
XT(α̃− α∗)

∣∣∣∣+

∣∣∣∣prn
Tπ′(t)

π∗2
(β̃ − β∗)TXXT(α̃− α∗)

∣∣∣∣
≤
∥∥∥∥prn

(
T

π∗
− 1

)
XT

∥∥∥∥
∞
‖α̃− α∗‖1 +

1

c2
0

[
prn{XT(β̃ − β∗)}2

]1/2 [
prn{XT(α̃− α∗)}2

]1/2
,

(S14)

where π′(·) is the derivative of π(·) and evaluated at some intermediate value, and it is easily seen
that |π′(t)| ≤ 1, and the last step follows from the Cauchy inequality. Since |T/π∗ − 1| ≤ 1/c0

and Xj is a sub-Gaussian random variable, we have that (T/π∗ − 1)Xj is a sub-exponential
random variable with ‖(T/π∗ − 1)Xj‖ψ1 ≤ 2CX/c0. By the Bernstein inequality and the union
bound argument, we have∥∥∥∥prn

(
T

π∗
− 1

)
XT

∥∥∥∥
∞

= Op

(( log d

n

)1/2
)
.

Combining Lemmas S3 and S4 with equation (S14), we obtain that

prn

(
T

π̃
− 1

)
XT(α̃− α∗) = Op

(
s log(d ∨ n)

n
+
s log(d ∨ n)

n

)
= op(n

−1/2),

where the last step follows from max(s1, s2) log(d ∨ n)/n1/2 = o(1). This completes the proof 215

of equation (S13).
In the following, we will bound I1 by using the empirical process theory. First, we note that

we can show that |supp(β̂)| ≤ Cs1 by applying the same argument in the proof of Lemma S3.
This further implies |supp(β̃)| ≤ Cs. Furthermore, Lemma S4 implies

‖β̃ − β∗‖22 ≤ prn{XT(β̃ − β∗)}2/ inf
S
λmin(prnX

⊗2
S ),

where S is a subset of {1, ..., d} with cardinality no larger than Cs. As shown in the proof of
Lemma S4 that min|S|≤Cs λmin(prnX

⊗2
S ) ≥ C, this implies ‖β̃ − β∗‖22 = Op(s log(d ∨ n)/n).

Define the set Ω = {β ∈ Rd : ‖β‖0 ≤ Cs, ‖β − β∗‖22 ≤ Cs log(d ∨ n)/n}. Obviously, β̃ be-
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longs to Ω with probability tending to 1. Let ε1 = Y (1)−K1(X) and πβ = π(XT
i β). Then220

|I1| ≤ sup
β∈Ω

∣∣∣prn
T (πβ − π∗)ε1

πβπ∗

∣∣∣ . n−1/2E sup
β∈Ω

∣∣∣Gn
T (πβ − π∗)ε1

πβπ∗

∣∣∣, (S15)

where Gnf = n1/2(prnf − prf). Let fβ = T (πβ − π∗)ε1/πβπ∗. The envelop function is F =
supβ∈Ω |fβ| ≤ C|ε1| by the lower and upper bounds of π. Since ε21 is sub-exponential, the
property of the sub-exponential norm implies pr maxi F (Ti, Xi, Yi)

2 ≤ Cpr maxi ε
2
1i ≤ C log n.

Similarly, we can show that

sup
β∈Ω

prf2 ≤ C sup
β∈Ω

prT 2{(β − β∗)TX}2ε21225

≤ C sup
β∈Ω

pr{(β − β∗)TX}2

≤ C sup
β∈Ω
‖β − β∗‖22 max

|S|≤Cs
λmax(ΣSS) ≤ C s log(d ∨ n)

n
.

Let F = {fβ : β ∈ Ω}. In fact when the support of β is fixed, the VC-dimension of {XT(β −
β∗) : β ∈ RCs} = Cs+ 2. Thus, supN(ε, {XT(β − β∗) : β ∈ Ω}, ‖ · ‖Q,2) ≤ sdCs(C/ε)Cs.
By the Lipschitz property of π, we have supN(ε‖F‖Q,2,F , ‖ · ‖Q,2) ≤ supN(ε, {XT(β −
β∗) : β ∈ Ω}, ‖ · ‖Q,2) ≤ sdCs(C/ε)Cs. Then, applying the maximal inequality (e.g., Lemma
C1 in Belloni et al. (2017)), we get

E sup
β∈Ω

∣∣∣Gn
T (πβ − π∗)ε1

πβπ∗

∣∣∣ . {s2 log d

n
log
( dn

s log d

)}1/2
+
s(log n)1/2

n1/2
log
( dn

s log d

)
.

Plugging into (S15), we have |I1| ≤ Cs log(d ∨ n)/n = op(n
−1/2). Thus, we have µ̂1 − µ∗1 =

n−1
∑n

i=1 Si + ∆, where Si = Ti/π
∗{Yi(1)−K1(Xi)}+K1(Xi)− µ∗1 and |∆| = op(n

−1/2).
Following the similar derivation in (Hahn, 1998), it is easy to verify that T/π∗{Y (1)−230

K1(X)}+K1(X)− µ∗1 corresponds to the efficient score function for µ∗1. This implies the semi-
parametric efficiency of µ̂1. Finally, after some tedious algebra, we can verify that the Lindberg
condition holds for Si under the assumption E(α∗TX)4 = O(s2

2), and therefore the central limit
theorem holds. This completes the proof.

S4·2. Proof of Corollary 1235

We first show that

|ξ̂2 − ξ2| = Op

({s log(d ∨ n)

n

}1/2
)
, (S16)

where

ξ̂2 =
1

n

n∑
i=1

Ti
π̃2
i

(Yi − α̃TXi)
2

and ξ = E(ε2/π∗i ). Then |ξ̂2 − ξ2| ≤ I1 + I2, where

I1 =

∣∣∣∣∣ 1n
n∑
i=1

Ti
(π∗i )

2
(Yi − α̃TXi)

2 − ξ2

∣∣∣∣∣ , I2 =

∣∣∣∣∣ 1n
n∑
i=1

Ti{π̃2
i − (π∗i )

2}
(π∗i π̃i)

2
(Yi − α̃TXi)

2

∣∣∣∣∣ .
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We can further decompose I1 as follows

I1 ≤

∣∣∣∣∣ 1n
n∑
i=1

Ti
(π∗i )

2
ε21i − ξ2

∣∣∣∣∣+

∣∣∣∣∣ 2n
n∑
i=1

Ti
(π∗i )

2
ε1iX

T
i (α̃− α∗)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

Ti
(π∗i )

2
{XT

i (α̃− α∗)}2
∣∣∣∣∣ 240

≤

∣∣∣∣∣ 1n
n∑
i=1

Ti
(π∗i )

2
ε21i − ξ2

∣∣∣∣∣+

∥∥∥∥∥ 2

n

n∑
i=1

Ti
(π∗i )

2
ε1iX

T
i

∥∥∥∥∥
∞

‖α̃− α∗‖1 +

∣∣∣∣∣ 1n
n∑
i=1

1

c0
{XT

i (α̃− α∗)}2
∣∣∣∣∣ .

Applying the Bernstein inequality for the first two terms and Lemma S3, we obtain that I1 =
Op(s log(d ∨ n)/n+ 1/n1/2). For I2, following the similar argument we can show that

I2 . [prn{XT(β̃ − β∗)}2]1/2 × [prn(Y − α∗TX)4]1/2

≤ C[prn{XT(β̃ − β∗)}2]1/2 = Op

({s log(d ∨ n)

n

})
. 245

The upper bounds for I1 and I2 imply that equation (S16) hold.
Now we consider the last term in V̂ − V , by doing a similar decomposition,∣∣∣∣∣ 1n

n∑
i=1

(α̃TXi − µ̂1)2 − E(α∗TXi − µ∗1)2

∣∣∣∣∣
≤
∣∣∣Bn − EBn∣∣∣+ 2An + 2(µ̂1 − µ∗1)2 + 2A1/2

n B1/2
n + 2B1/2

n (µ̂1 − µ∗1),

where An = n−1
∑n

i=1{(α̃− α∗)TXi}2 and Bn = n−1
∑n

i=1(α∗TXi − µ∗1)2. Recall that
E(α∗TXi)

4 = O(s2
2). By Lemma S3 An = Op(s log(d ∨ n)/n). By the Markov inequal-

ity and Cauchy inequality, we have Bn . E(α∗TXi)
2 ≤ {E(α∗TXi)

4}1/2 = Op(s2). Simi-
larly, by Markov inequality |µ̂1 − µ∗1| . (V/n)1/2 = Op(s

1/2
2 /n1/2). Finally, |Bn − EBn| .

{E(α∗TXi)
4}1/2/n1/2 = Op(s2/n

1/2). Thus∣∣∣∣∣ 1n
n∑
i=1

(α̃TXi − µ̂1)2 − E(α∗TXi − µ∗1)2

∣∣∣∣∣ = Op

(
(s1 ∨ s2)

{ log(d ∨ n)

n

}1/2
)
.

Together with equations (S16), we complete the proof. 250

S4·3. Proof of Proposition 1
We first prove the asymptotic normality of µ̂1 when w1(u) = 1. Recall that when the propen-

sity score model is misspecified, the estimand of β̂ in (7) is defined as

βo = arg maxE
[ ∫ βTXi

0

{ Ti
π(u)

− 1
}
du
]
. (S17)

Since πoi is bounded from below by a positive constant, the dominated convergence theorem
implies that βo is the solution of the equation E{Ti/π(βTXi)− 1}Xi = 0. By replicating the
proof of Lemma S2, we can show that

‖β̂ − βo‖1 = Op

(
s1

{ log(d ∨ n)

n

}1/2
)
, prn[XT(β̂ − βo)]2 = Op

(
s1 log(d ∨ n)

n

)
.

Furthermore, Lemma S3 and S4 imply

‖α̃− α∗‖1 = Op

(
(s1 ∨ s2)

{ log(d ∨ n)

n

}1/2
)
, prn{XT(α̃− α∗)}2 = Op

(
(s1 ∨ s2) log(d ∨ n)

n

)
,
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‖β̃ − βo‖1 = Op

({s2 log(d ∨ n)

n

}1/2
)
, prn{XT(β̃ − βo)}2 = Op

(
s log(d ∨ n)

n

)
,

where s = s1 ∨ s2. Similar to that of Theorem 1, we have

µ̂1 − µ∗1 = prn

[
T

πo
{Y (1)−K1(X)}+K1(X)− µ∗1

]
+ I1 + I2,255

where

I1 = prn

(
T

π̃
− T

πo

)
{Y (1)−K1(X)}, I2 = prn

(
T

π̃
− 1

)
K1(X).

The first term I1 can be bounded by applying the same maximal inequalities for empiri-
cal processes. The same rate |I1| ≤ Cs log(d ∨ n)/n = op(n

−1/2) can be obtained. The diffi-
culty comes from the second term I2. First, the covariate balancing equation in step 3 forces
prn(T/π̃ − 1)XTα̃ = 0, which removes the bias induced by plugging in the estimator β̃ and α̃.
Second, for I2, following our previous proof, we have260

|I2| =
∣∣∣∣prn

(
T

π̃
− 1

)
XT(α̃− α∗)

∣∣∣∣
≤
∣∣∣∣prn

(
T

πo
− 1

)
XT(α̃− α∗)

∣∣∣∣+ C
∣∣∣prn(β̃ − β∗)TXXT(α̃− α∗)

∣∣∣
≤
∥∥∥∥prn

(
T

πo
− 1

)
XT

∥∥∥∥
∞
‖α̃− α∗‖1 + C

[
prn{XT(β̃ − β∗)}2

]1/2 [
prn{XT(α̃− α∗)}2

]1/2
.

The last term has the fast convergence rate Op(s log(d ∨ n)/n). For the first term, we have
E{(T/πo − 1)X} = 0. Thus, we can apply the Bernstein equality to show ‖prn(T/πo −
1)X‖∞ = Op((log d/n)1/2). Together with the convergence rate of α̃, we obtain |I2| ≤
Cs log(d ∨ n)/n = op(n

−1/2). The asymptotic normality of µ̂1 follows directly from the cen-
tral limit theorem. We note that in general ‖E(T/πo − 1)X‖∞ can be viewed as a bias term,
which typically has the order of Op(1). We get a sharper rate because E{(T/πo − 1)X} = 0,
which benefits from the definition of the least false parameter in (S17). For instance, if we choose
w1(u) 6= 1 in (S17), the bias term has the order of ‖prn(T/πo − 1)X‖∞ = Op(1). This leads to
a slower rate |I2| ≤ Cs{log(d ∨ n)/n}1/2. Indeed, we can get a sharper bound for I2 by apply-
ing the Cauchy inequality∣∣∣∣prn

(
T

πo
− 1

)
XT(α̃− α∗)

∣∣∣∣ ≤
∣∣∣∣∣prn

(
T

πo
− 1

)2
∣∣∣∣∣
1/2

|prn{XT(α̃− α∗)}2|1/2 = Op

({s log(d ∨ n)

n

}1/2
)
.

Thus µ̂1 − µ∗1 = Op({s log(d ∨ n)/n}1/2) for w1(u) 6= 1.

S4·4. Proof of Proposition 2265

Recall that when the outcome model is misspecified, the least false parameter is defined as

αo = arg minE
{
Tiw2(β∗TXi)(Yi − αTXi)

2
}
.

Again, the dominated convergence theorem implies E{Tiw2(β∗TXi)(Yi − αoTXi)Xi} = 0.
Similarly, by the proof of Lemma S3, we have

‖α̃− αo‖1 = Op

(
(s1 ∨ s2)

{ log(d ∨ n)

n

}1/2
)
, prn[XT(α̃− αo)]2 = Op

(
(s1 ∨ s2) log(d ∨ n)

n

)
.
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To prove this proposition, we note the similar decomposition holds

µ̂1 − µ∗1 = prn

[
T

π∗
{Y (1)− αoTX}+ αoTXi − µ∗1

]
+ I1 + I2,

where

I1 = prn

(
T

π̃
− T

π∗

)
{Y (1)− αoTX}, I2 = prn

(
T

π̃
− 1

)
αoTX.

By adding the equations prn(T/π̃ − 1)XTα̃ = 0 to I2, we can apply the same steps in the proof
of Proposition 1 and note that the propensity score is correctly specified in this case. This gives us
|I2| ≤ Cs log(d ∨ n)/n = op(n

−1/2), which holds regardless of the choice of the weight func-
tions w1(u) and w2(u). In this case, the difficulty comes from the first term I1. By the Taylor
expansion,

|I1| =
∣∣∣prn

Tπ′

π∗π̃
εoXT(β̃ − β∗)

∣∣∣ ≤ ∥∥∥prn
Tπ′

π∗π̃
εoX

∥∥∥
∞
‖β̃ − β∗‖1,

where π′ is the derivative of π(u) evaluated at some intermediate value between XT
i β
∗

and XT
i β̃ and εo = Y (1)− αoTX . Since E(εo|X) 6= 0 in general, we no longer have

E{T (π∗)′/(π∗)2εoX} = 0 as when the outcome model is correctly specified. In this sense, we 270

can treat E{T (π∗)′/(π∗)2εoX} as the bias term under the misspecified outcome model. So, in
general, we can bound I1 as follows

|I1| =
∣∣∣prn

Tπ′

π∗π̃
εoXT(β̃ − β∗)

∣∣∣ ≤ ∣∣∣prn
(Tπ′)2

(π∗π̃)2
εo2
∣∣∣1/2[prn{XT(β̃ − β∗)}2]1/2

≤ C|prnTε
o2|1/2[prn{XT(β̃ − β∗)}2]1/2 = Op({s log(d ∨ n)/n}1/2).

Thus, we prove that µ̂1 − µ∗1 = Op({s log(d ∨ n)/n}1/2). Finally, we consider the case that 275

w2(u) = π′(u)/π2(u). With this particular choice of w2, we have E{T (π∗)′/(π∗)2εoX} = 0,
i.e., the bias term becomes 0. In the following, we will prove it formally |I1| ≤ Cs log(d ∨
n)/n = op(n

−1/2) when w2(u) = π′(u)/π2(u). Once it is proved, the asymptotic normality of
µ̂1 follows directly.

By adding and subtracting prn{T (π∗)′/(π∗)2εoXT(β̃ − β∗)}, we have

I1 = prn
{ π̃ − π∗

π∗π̃
− (π∗)′XT(β̃ − β∗)

(π∗)2

}
Tεo + prn

(π∗)′XT(β̃ − β∗)
(π∗)2

Tεo := I11 + I12.

For I12, 280

|I12| ≤ ‖β̃ − β∗‖1
∥∥∥prn

(π∗)′X

(π∗)2
Tεo
∥∥∥
∞

= Op

(s log(d ∨ n)

n

)
, (S18)

where we plug in the rate of convergence of β̃ and apply the Bernstein inequality and union
bounds for (π∗)′Xj/(π

∗)2Tεo, since |(π∗)′Xj/(π
∗)2Tεo| ≤ C|Xjε

o| is sub-exponential. Now,
we consider the term I11. Similarly, we define the set Ω = {β ∈ Rd : ‖β‖0 ≤ Cs, ‖β − β∗‖22 ≤
Cs log(d ∨ n)/n}, so that β̃ belongs to Ω with probability tending to 1. Let πβ = π(XT

i β). Then

|I11| ≤ sup
β∈Ω
|prnfβ| ≤ sup

β∈Ω
|(prn − pr)fβ|+ sup

β∈Ω
|prfβ|, (S19)
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where

fβ =
{πβ − π∗

π∗πβ
− (π∗)′XT(β − β∗)

(π∗)2

}
Tεo.

We use the maximal inequality to bound the first term. For any β ∈ Ω, we have ‖β − β∗‖1 ≤285

|supp(β − β∗)|1/2‖β − β∗‖2 ≤ Cs{log(d ∨ n)/n}1/2. Thus, with probability tending to 1,
|XT(β − β∗)| ≤ 1, and |fβ| ≤ C|εo|. We take the envelop function as F = C|εo|. Similarly,
pr maxi F (Ti, Xi, Yi)

2 ≤ Cpr maxi ε
2
1i ≤ C log n. We now look at supβ∈Ω prf2

β . Note that ap-
plying the mean-value theorem, we have

sup
β∈Ω

prf2
β = sup

β∈Ω
prT 2εo2{(β − β∗)TX}2

( π̄′

πβπ∗
− (π∗)′

(π∗)2

)2
290

≤ C sup
β∈Ω

pr{(β − β∗)TX}2 ≤ C s log(d ∨ n)

n
,

where π̄′ = π′{tXTβo + (1− t)XTβ} for some t ∈ (0, 1) which is bounded by Assumption
6. Let F = {fβ : β ∈ Ω}. The uniform covering number of F satisfies supN(ε‖F‖Q,2,F , ‖ ·
‖Q,2) ≤ sds(C/ε)Cs. Then, applying the maximal inequality (e.g., Lemma C1 in Belloni et al.
(2017)), we get

E sup
β∈Ω

∣∣∣Gnfβ

∣∣∣ . {s2 log d

n
log
( dn

s log d

)}1/2
+
s(log n)1/2

n1/2
log
( dn

s log d

)
.

sup
β∈Ω
|(prn − pr)fβ| . n−1/2E sup

β∈Ω

∣∣∣Gnfβ

∣∣∣ = Op

(s log(d ∨ n)

n

)
.

Next, we will bound the second term in (S19). To get a sharp bound, we apply the same mean-
value theorem and the Cauchy inequality,

sup
β∈Ω
|prfβ| ≤ sup

β∈Ω

{
pr
T 2εo2

(π∗)2

( π̄′
πβ
− (π∗)′

π∗

)2}1/2
[pr{(β − β∗)TX}2]1/2

≤ C sup
β∈Ω
{pr(π̄′π∗ − πβ(π∗)′)2}1/2[pr{(β − β∗)TX}2]1/2295

≤ C s log(d ∨ n)

n
,

where we apply the standard perturbation analysis to the last term, i.e.,

{π̄′π∗ − πβ(π∗)′}2 = [{π̄′ − (π∗)′}π∗ + (π∗ − πβ)(π∗)′]2

≤ 2{π̄′ − (π∗)′}2(π∗)2 + 2(π∗ − πβ)2{(π∗)′}2

≤ 2C[XT(β − β∗)2(π∗)2 +XT(β − β∗)2{(π∗)′}2],300

where the last step follows from the Lipschitz condition in Assumption 6. Plugging into (S19),
we have |I11| ≤ Cs log(d ∨ n)/n = op(n

−1/2). Combining with (S18), we finally prove that
|I1| ≤ Cs log(d ∨ n)/n = op(n

−1/2). This completes the proof.

S4·5. Proof of Theorem 2
Without loss of generality, we let a(φ) = 1. Similar to the previous appendix, we make the305

modifications on the estimation of γ in step 3. Specifically, let γ̃ = arg minγ∈Ω ‖gn(γ)‖22, where
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Ω = {γ : ‖γ − β̂S̃‖1 ≤ δ/ log n} for some small constant δ > 0. We first prove part (1) in The-
orem 2.

LEMMA S5. Under the assumptions in Theorem 2,

‖α̂− α∗‖1 = Op

(
Cns2

{ log(d ∨ n)

n

}1/2
)
, prn[XT(α̂− α∗)]2 = Op

(
C2
ns2 log(d ∨ n)

n

)
.

The proof of this lemma is similar to Lemma S2. The main difference is to show the following
concentration inequality

pr
(
‖prnTXiε1‖∞ ≥ CCn

{ log(d ∨ n)

n

}1/2)
≤ 1

d ∨ n
.

This is true by noting that ‖TXijεi‖ψ1 ≤ CCn and we can apply the Bernstein inequality and
the union bound argument. Recall that we denote s = s1 ∨ s2. 310

LEMMA S6. Under the assumptions in Theorem 2,

‖β̂ − β∗‖1 = Op

(
Cns

{ log(d ∨ n)

n

}1/2
)
, prn[XT(β̂ − β∗)]2 = Op

(
C2
ns log(d ∨ n)

n

)
.

The proof is similar to Lemma S2. We only highlight the differences. Denote

Qn(β) =
1

n

n∑
i=1

∫ βTXi

0

{ Ti
π(u)

− 1
}
w1(α∗TXi, u)du,

Q̂n(β) =
1

n

n∑
i=1

∫ βTXi

0

{ Ti
π(u)

− 1
}
w1(α̂TXi, u)du,

As shown in in Lemma S2, we have

D̂(β̄, β∗) + λ‖β̄‖1 ≤ ∇Q̂n(β∗)(β̄ − β∗) + λ‖β∗‖1

where D̂(β̄, β∗) = Q̂n(β∗)− Q̂n(β̄) +∇Q̂n(β∗)(β̄ − β∗). Note that

∇Q̂n(β∗)(β̄ − β∗) = ∇Qn(β∗)(β̄ − β∗) + [{∇Q̂n(β∗)−∇Qn(β∗)}(β̄ − β∗)]

≤ ∇Qn(β∗)(β̄ − β∗) + CCn

{s2 log(d ∨ n)

n

}1/2
δn

≤ Bλ/3 + CCn

{s2 log(d ∨ n)

n

}1/2
δn,

where δ2
n = n−1

∑n
i=1{XT

i (β̄ − β∗)}2. In the second step, we use the Lipschitz property and the 315

Cauchy inequality. The last step holds under the event ‖∇Qn(β∗)(β̄ − β∗)‖∞ ≤ λ/3. Again, by
choosing λ = CCn{log(d ∨ n)/n}1/2, the Bernstein inequality implies that this event holds with
high probability. In addition, by Assumption 9 after some algebra, we can show

D̂(β̄, β∗) ≥ Cδ2
n −

1

n

n∑
i=1

(Ti − π∗i ){XT
i (β̄ − β∗)}2

≥ Cδ2
n − CCn‖∆̄‖21

{ log(d ∨ n)

n

}1/2
, 320
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with high probability. If ‖∆̄‖1 > B/2, then

Cδ2
n +

1

3
λ‖∆̄Sc‖1 ≤

5

3
λ‖∆̄S‖1 + CCn

{s2 log(d ∨ n)

n

}1/2
δn + CCn‖∆̄‖21

{ log(d ∨ n)

n

}1/2
.

Since ‖∆̄‖1 ≤ B . 1, this implies

Cδ2
n +

1

6
λ‖∆̄Sc‖1 ≤

11

6
λ‖∆̄S‖1 + CCn

{s2 log(d ∨ n)

n

}1/2
δn.

We want to first show δn . s1/2λ. Otherwise, Cδ2
n − CCn{s2 log(d ∨ n)/n}1/2δn > 0, and

then the cone condition ‖∆̄Sc‖1 ≤ 11‖∆̄S‖1 holds. By the compatibility factor condition,
we have ‖∆̄S‖1 . s1/2

1 δn. Thus, Cδ2
n . s

1/2
1 λδn + Cn{s2 log(d ∨ n)/n}1/2δn. This proves

δn . s1/2λ. We further show that ‖∆̄‖1 . sλ. For some constant t to be chosen later, if
‖∆̄Sc‖1 ≤ t‖∆̄S‖1 holds, ‖∆̄‖1 ≤ (1 + t)‖∆̄S‖1 ≤ (1 + t)s

1/2
1 δn . sλ. However if ‖∆̄Sc‖1 >325

t‖∆̄S‖1 holds, then t−11
6 λ‖∆̄S‖1 ≤ CCn{s2 log(d ∨ n)/n}1/2δn. Choosing t = 12, it yields

‖∆̄S‖1 ≤ 6Cs
1/2
2 δn . sλ. Similarly, we can show that ‖∆̄Sc‖1 . sλ and therefore ‖∆̄‖1 . sλ.

By choosing B = Csλ for some C large enough, we obtain that ‖∆̄‖1 ≤ B/2. The remaining
proof follows the same argument as in the proof of Lemma S2 and is omitted.

LEMMA S7. Under the assumptions in Theorem 2,

‖α̃− α∗‖1 = Op

(
Cns

{ log(d ∨ n)

n

}1/2
)
, prn{XT(α̃− α∗)}2 = Op

(
C2
ns log(d ∨ n)

n

)
.

Similar to Lemma S3, the proof essentially follows from Lemma E.1 of Ning & Liu (2017).330

We omit the details.

LEMMA S8. Under the assumptions in Theorem 2,

‖β̃ − β∗‖1 = Op

(
Cns

{ log(d ∨ n)

n

}1/2
)
, prn{XT(β̃ − β∗)}2 = Op

(
C2
ns log(d ∨ n)

n

)
.

The proof is similar to the proof of Lemma S4, we omit the details.

Proof Proof of Theorem 2. Like the proof of Theorem 1, we start with the decomposition:

µ̂1 − µ∗1 = prn

[
T

π∗
{Y (1)−K1(X)}+K1(X)− µ∗1

]
+ I1 + I2, (S20)

where

I1 = prn

(
T

π̃
− T

π∗

)
{Y (1)−K1(X)}, I2 = prn

(
T

π̃
− 1

)
{K1(X)− K̂1(X)}.

We first consider I2. Recall that K1(X) = b′(α∗TX), K̂1(X) = b′(α̃TX). Note that335

I2 = prn

(
T

π̃
− 1

)
{b′(α∗TX)− b′(α̃TX)− b′′(α̃TX)(α∗ − α̃)T

S̃
XS̃}

= prn

(
T

π̃
− 1

)
[b′′(α̃TX)(α∗ − α̃)T

S̃cXS̃c + b′′′(t){(α∗ − α̃)TX}2],

where t is an intermediate value between α∗TX and α̃TX . We denote

I21 = prn

(
T

π̃
− 1

)
b′′(α̃TX)(α∗ − α̃)T

S̃cXS̃c , I22 = prn

(
T

π̃
− 1

)
b′′′(t){(α∗ − α̃)TX}2.
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For I21, we further apply the multivariate Taylor theorem to expand π̃ and b′′(α̃TX),

I21 = prn

(
T

π∗
− 1

)
b′′(α∗TX)(α∗ − α̃)T

S̃cXS̃c − prn
Tπ′(t1)

π∗2
b′′(t2)(β̃ − β∗)TX̄(α∗ − α̃)T

S̃cXS̃c

+ prn

{
T

π(t1)
− 1

}
b′′′(t2)(α̃− α∗)TX(α∗ − α̃)T

S̃cXS̃c , (S21) 340

where t1 and t2 are the intermediate values between β∗T X̄ and β̃TX̄ , and between α∗TX and
α̃TX . For the first term in equation (S21), we have |T/π∗ − 1| ≤ 1/c0, and b′′(α∗TX) and Xj

are both bounded random variables, we can apply the Hoeffding inequality and the union bound
argument, which gives us∥∥∥∥prn

(
T

π∗
− 1

)
b′′(α∗TX)XS̃c

∥∥∥∥
∞

= Op

(
Cn

{ log(d ∨ n)

n

}1/2
)
.

Together with Lemma S7, we have∣∣∣∣prn

(
T

π∗
− 1

)
b′′(α∗TX)(α∗ − α̃)T

S̃cXS̃c

∣∣∣∣ = Op

(
C2
ns log(d ∨ n)

n

)
.

Similar to the derivation in equation (S14), for the second term in equation (S21), by Lemma S8,∣∣∣∣prn
Tπ′(t1)

π∗2
b′′(t2)(β̃ − β∗)TX̄(α∗ − α̃)T

S̃cXS̃c

∣∣∣∣ = Op

(
C2
ns log(d ∨ n)

n

)
.

For the last term in equation (S21), first we note that b′′′(·) is continuous by assumption, and
|b′′′(t2)| is bounded. In addition, π(t1) is also bounded away from 0. We apply the Cauchy
inequality, 345∣∣∣∣prn

{
T

π(t1)
− 1

}
b′′′(t2)(α̃− α∗)TX(α∗ − α̃)T

S̃cXS̃c

∣∣∣∣
≤

[
prn

{
T

π(t1)
− 1

}2

b′′′(t2)2{(α̃− α∗)TX}2
]1/2 [

prn{(α∗ − α̃)T
S̃cXS̃c}2

]1/2

= Op

(
C2
ns log(d ∨ n)

n

)
.

Combining these results with equation (S21), we obtain

|I21| = Op

(
C2
ns log(d ∨ n)

n

)
.

The same argument above can be used to control the magnitude of I22, which yields

|I22| ≤ Cprn{(α∗ − α̃)TX}2 = Op

(
C2
ns log(d ∨ n)

n

)
. (S22)

for some constant C > 0. This together implies the rate of convergence of I2

|I2| = Op

(
C2
ns log(d ∨ n)

n

)
.

For I1, recall that ε1 = Y (1)−K1(X) is sub-exponential. Applying the same empirical process 350

argument as in the proof of Theorem 1, we can show that |I1| . C2
ns log(d ∨ n)/n. Thus, we

obtain the part (1) in this theorem.
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Next, we will prove part (2). Since the outcome model is correct, Lemma S5 holds. The same
argument in Lemma S6 implies

‖β̂ − βo‖1 = Op

(
Cns

{ log(d ∨ n)

n

}1/2
)
, prn{XT(β̂ − βo)}2 = Op

(
C2
ns log(d ∨ n)

n

)
.

(S23)
Given the above convergence rate of β̂, Lemma S7 holds regardless of the choice of w2(u). The
rate in (S23) also holds for β̃ as in Lemma S8. With π∗ replaced by πo, we have the similar
decomposition in (S20), where

I1 = prn

(
T

π̃
− T

πo

)
{Y (1)−K1(X)}, I2 = prn

(
T

π̃
− 1

)
{K1(X)− K̂1(X)}.

The bound for I1 is the same as before. For I2, it can be further decomposed as the sum of I21

and I22. As shown in (S21), the second and third term of I21 is the same and the first term is
controlled by the Hoeffding inequality and the union bound argument, i.e.,∥∥∥∥prn

(
T

πo
− 1

)
b′′(α∗TX)XS̃c

∥∥∥∥
∞

= Op

(
Cn

{ log(d ∨ n)

n

}1/2
)
,

where we use the fact that βo is defined as E{(T/πo − 1)b′′(α∗TX)X} = 0 when we choose355

w1(u, v) = b′′(u). The same bound (S22) holds for I22. To sum things up, we have |I2| .
C2
ns log(d ∨ n)/n. This implies part (2) in this theorem.
Finally, we will prove the part (3). Given the decomposition in (S20), we have |I2| .

C2
ns log(d ∨ n)/n by applying the same argument, which holds regardless of the choice

of w1(u, v) and w2(u). We now consider I1. Let εo = Y − b′(XTαo). When w2(u) =
π′(u)/π2(u), by adding and subtracting prn{T (π∗)′/(π∗)2εoXT(β̃ − β∗)}, we have

I1 = prn
{ π̃ − π∗

π∗π̃
− (π∗)′XT(β̃ − β∗)

(π∗)2

}
Tεo + prn

(π∗)′XT(β̃ − β∗)
(π∗)2

Tεo := I11 + I12.

For I12,

|I12| ≤ ‖β̃ − β∗‖1
∥∥∥prn

(π∗)′X

(π∗)2
Tεo
∥∥∥
∞

= Op

(C2
ns log(d ∨ n)

n

)
, (S24)

where we plug in the rate of convergence of β̃ and apply the Bernstein inequality and union
bounds for (π∗)′Xj/(π

∗)2Tεo, since it is mean 0 by the definition of αo and ψ1 norm CCn.360

The same empirical process theory as in the proof of Proposition 2 can be applied to derive
|I11| . C2

ns log(d ∨ n)/n = op(n
−1/2). Thus the same bound holds for I1. This completes the

proof. �

S5. MODIFIED ALGORITHM BASED ON SAMPLE SPLITTING

For simplicity, assume that we divide the data randomly into three folds I1, I2, I3, where I1 ∪365

I2 ∪ I3 = [n]. We consider the following algorithm.

Step 1: For a given k ∈ {1, 2, 3}, define a generalized quasi-likelihood function for data Ik as

Qn(β; Ik) =
1

|Ik|
∑
i∈Ik

∫ βTXi

0

{ Ti
π(u)

− 1
}
w1(u)du,
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where w1(u) is an arbitrary positive weight function. Compute the estimator

β̂Ik = arg min
β∈Rd

−Qn(β; Ik) + λ‖β‖1,

where λ > 0 is a tuning parameter.
Step 2: For a given k′ ∈ {1, 2, 3} and k′ 6= k, define a weighted least square loss function using

the treatment group as

Ln(α; Ik′) =
1

|Ik′ |
∑
i∈Ik′

Tiw2(β̂T
Ik
Xi)(Yi − αTXi)

2,

where w2(·) is another positive weight function. Compute the estimator

α̂Ik′ = arg min
α∈Rd

Ln(α; Ik′) + λ′‖α‖1,

where λ′ > 0 is a tuning parameter.
Step 3: Compute the augmented inverse probability weighted estimator based on the sample

k′′ ∈ {1, 2, 3} and k′′ 6= k and k′′ 6= k

µ̂
(k,k′,k′′)
1 =

1

|Ik′′ |
∑
i∈Ik′′

TiYi

πi(β̂T
Ik
Xi)
− 1

|Ik′′ |
∑
i∈Ik′′

{ Ti

πi(β̂T
Ik
Xi)
− 1}(α̂T

Ik′
Xi).

Step 4: Define the final estimator as

µ̂1 =
1

6

∑
{k,k′,k′′}={1,2,3}

µ̂
(k,k′,k′′)
1 .

It can be easily verified that

‖α̃Ik − α
∗‖1 = Op

(
s2

{ log(d ∨ n)

n

}1/2
)
, prn{XT(α̂Ik − α

∗)}2 = Op
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)
.

‖β̂Ik − β
∗‖1 = Op

(
s1

{ log(d ∨ n)

n

}1/2
)
, prn{XT(β̂Ik − β

∗)}2 = Op

(
s1 log(d ∨ n)

n

)
.

Similar to Chernozhukov et al. (2018), we can show that

µ̂
(k,k′,k′′)
1 − µ∗1 =

1

|Ik′′ |
∑
i∈Ik′′

[
Ti
π∗i
{Yi(1)− α∗TXi}+ α∗TXi − µ∗1

]
+Op

((s1s2)1/2 log(d ∨ n)

n

)
.

(S25)
The proof follows from the proof of Theorem 1, where we have the residual terms

R1 = prn

(
T

π̂
− T

π∗

)
{Y (1)−K1(X)}, R2 = prn

(
T

π̂
− 1

)
(α̂− α∗)TX.

Here, for simplicity of notation, we use β̂ and α̂ to denote β̂Ik and α̂Ik . Due to the use of inde-
pendent samples, α̂ and β̂ are independent of (Ti, Xi, Yi) in the terms R1 and R2. We further
decompose R2 into

R2 = prn

(
T

π∗
− 1

)
(α̂− α∗)TX + prn

(
T

π̂
− T

π∗

)
(α̂− α∗)TX.
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The second term can be bounded similar to the proof of Theorem 1, which yields∣∣∣prn

(
T

π̂
− T

π∗

)
(α̂− α∗)TX

∣∣∣ . (s1s2)1/2 log(d ∨ n)

n
.

For the first term, we note that

E
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)
(α̂− α∗)TX|α̂,X, T

}
= 0

holds, due to the independence of α̂ and (Ti, Xi, Yi). Unlike the proof of Theorem 1, we directly370

apply the Hoeffding inequality. For some t to be chosen later, we have

pr
{
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where ∆2

n = prn{XT(α̂Ik − α∗)}2. Since given any ε > 0, pr(∆2
n ≥ C ′s1 log(d ∨ n)/n) ≤ ε

for C ′ sufficiently large, by taking t2 = C ′′C ′s1 log(d ∨ n)/n we have375
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for C ′′ sufficiently large. This implies

prn
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Similarly, we can show that R1 . s
1/2
2 log(d ∨ n)/n. This proves (S25). Finally, when we ag-

gregate the estimators from different subsamples, by the Bahadur representation in (S25), we can380

easily show that Theorem 1 still holds for the final estimator.

S6. CONVERGENCE RATE OF THE AUGMENTED INVERSE PROBABILITY WEIGHTED
ESTIMATORS UNDER MISSPECIFIED PROPENSITY SCORE MODELS

In this appendix, we prove the rate of convergence of the augmented inverse probability
weighted estimator under misspecified propensity score models. Recall that, given estimators
β̂ and α̂, the augmented inverse probability weighted is defined as

µ̂AIPW =
1

n

n∑
i=1

Ti
π̂i
Yi −

1

n

n∑
i=1

(
Ti
π̂i
− 1

)
α̂TXi,

where π̂i = π(XT
i β̂). Our goal is to show that the rate of convergence of µ̂AIPW could be slower

than root-n under misspecified propensity score models.385



High-Dimensional Propensity Score 25

We can show that µAIPW = I1 + I2, where

I1 =
1

n

n∑
i=1

Ti
π̂i
Yi −

1

n

n∑
i=1

(
Ti
π̂i
− 1

)
α∗TXi, I2 =

1

n

n∑
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(
Ti
π̂i
− 1

)
(α̂− α∗)TXi.

After rearrangement of I1, we have

I1 =
1

n

n∑
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Ti
π̂i
ε1i −

1

n

n∑
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α∗TXi =
1

n

n∑
i=1

Ti
πoi
ε1i −

1

n

n∑
i=1

α∗TXi + op(n
−1/2),

where the last step is identical to the proof of Proposition 1. Same as the proof of Theorem 1, we
can show that I1 = µ∗1 +Op(n

−1/2).
The problem of augmented inverse probability weighted comes from the I2 term. For instance,

if α̂ is the Lasso estimator, then

I2 ≤ ‖α̂− α∗‖1

{∥∥∥∥∥ 1

n

n∑
i=1

(
Ti
πoi
− 1

)
Xi

∥∥∥∥∥
∞

+ op(1)

}
. ‖α̂− α∗‖1 = Op

(
s
( log d

n

)1/2
)
,

where in the first step we use the rate of convergence of β̂, the second step follows from 390

E{(Ti/πoi − 1)Xij} 6= 0 but is bounded and the Bernstein inequality, and the last step fol-
lows from the rate of convergence of the Lasso estimator. Putting together the order of I1 and
I2, we have µ̂AIPW = µ∗1 +Op(s(log d/n)1/2). By applying the Cauchy inequality, we can
similarly show I2 = Op(s(log d/n)1/2) and therefore we can obtain a slightly stronger result
µ̂AIPW = µ∗1 +Op(s(log d/n)1/2). Clearly, the bias term I2 cannot converge 0 with rate faster 395

than n−1/2 even if the double machine learning (i.e, sample splitting or cross-fitting) in Cher-
nozhukov et al. (2018) is applied. In sum, µ̂AIPW has a slower rate Op(s(log d/n)1/2) under
misspecified propensity score models.

In an independent work, Tan (2018) also realized the importance of (16) when studying the
decomposition of µ̂AIPW − µ∗1 as above. He proposed an alternative estimation procedure for β 400

under the logistic propensity score model, rather than the covariate balancing estimator. In ad-
dition, our estimator µ̂1 is an inverse probability weighted estimator, whereas he considered the
augmented inverse probability weighted estimator µ̂AIPW in his approach. Finally, our theoreti-
cal results are more comprehensive. For instance, our Theorem 1, and Propositions 1 and 2 show
that there exists a large class of estimators that is asymptotically normal under possible model 405

misspecification. Second, our theory holds for generalized linear models as shown in Theorem 2,
whereas his method is not applicable if the propensity score model is misspecified

S7. ADDITIONAL SIMULATION RESULTS

S7·1. Summary
Due to the space constraint, we include more extensive numerical results in this section. Sec- 410

tion S7·3 contains simulations under different data generating processes. Section S7·4 contains
simulations under logistic outcome models. Section S7·5 contains simulations for non-sparse
models. Section S7·6 contains simulations under moderate dimensions. Section S7·7 contains
the comparison with the normalized inverse probability weighted estimator. Finally, Section S7·8
contains sensitivity analysis with respect to the choice of tuning parameters. 415
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Table 1: Bias, standard error (Std Err), standardized root-mean-squared error (RMSE), coverage
probability of 95% confidence intervals (Coverage), and length of 95% confidence intervals (CI
length) for the estimation of the average treatment effect. Four methods – the proposed method
(HD-CBPS), approximate residual balancing (RB), regularized augmented inverse probability
weighted estimator (AIPW), and double selection (D-SELECT) – are compared.

n = 1000 d = 1000 d = 2000

HD-CBPS RB AIPW D-SELECT HD-CBPS RB AIPW D-SELECT

(1) Both models are correct
Bias -0·0233 -0·0234 -0·0814 -0·0476 0·0199 0·0186 -0·0056 0·0249
Std Err 0·0669 0·0777 0·0647 0·0690 0·0659 0·07476 0·0654 0·0757
RMSE 0·0695 0·0729 0·0678 0·0839 0·0689 0·0769 0·0657 0·0797
Coverage 0·955 0·940 0·905 0·920 0·940 0·935 0·950 0·955
CI length 0·2828 0·3010 0·2700 0·2978 0·2746 0·2979 0·2697 0·3187

(2) Propensity score model is misspecified
Bias -0·0297 -0·0455 -0·0931 -0·0362 0·0164 0·0135 -0·0137 0·0116
Std Err 0·0607 0·0694 0·0605 0·0665 0·0662 0·0758 0·0659 0·0846
RMSE 0·0671 0·0842 0·1105 0·0757 0·0682 0·0770 0·0673 0·0854
Coverage 0·970 0·930 0·855 0·930 0·940 0·955 0·955 0·935
CI length 0·2801 0·3040 0·2694 0·2960 0·2746 0·2987 0·2697 0·3381

(3) Outcome model is misspecified
Bias -0·0222 -0·0229 -0·0821 -0·0436 -0·0062 -0·0026 -0·0517 0·0262
Std Err 0·0670 0·0699 0·0653 0·0671 0·0653 0·0709 0·0630 0·0669
RMSE 0·0706 0·0735 0·1049 0·0800 0·0656 0·0709 0·0815 0·0718
Coverage 0·960 0·960 0·890 0·955 0·975 0·970 0·930 0·965
CI length 0·2842 0·3058 0·2709 0·3002 0·2848 0·3139 0·2726 0·2920

(4) Both models are misspecified
Bias -0·0157 -0·0072 -0·0504 -0·0366 0·0150 0·0009 -0·0635 0·0076
Std Err 0·0701 0·0822 0·0721 0·0687 0·0613 0·0765 0·0598 0·0792
RMSE 0·0718 0·0825 0·0880 0·0779 0·0631 0·0765 0·0872 0·0796
Coverage 0·945 0·960 0·905 0·925 0·990 0·960 0·905 0·950
CI length 0·2872 0·3117 0·2774 0·3046 0·2882 0·3281 0·2739 0·3426

S7·2. Simulation results for n = 1000

Table 1 shows the bias, standard error, standardized root mean squared error
{E(µ̂− µ)2}1/2/µ, coverage probability of 95% confidence intervals, and their length for the
estimation of the average treatment effect under the same data generating process with n = 1000.

S7·3. Simulation Results under Different Data Generating Processes420

In Table 2, we generate the d dimensional covariate Xi ∼ N(0,Σ) where Σjk = ρ|j−k| with
ρ = 0. We generate the binary treatment Ti using the logistic regression model of the form,
π(Xi) = 1− 1/{1 + exp(−Xi1 +Xi2/2−Xi3/4−Xi4/10−Xi5/10 +Xi6/10)}. The po-
tential outcomes are generated from the linear regression models:

Yi(1) = 2 + 0 · 137(Xi5 +Xi6 +Xi7 +Xi8) + ε1i,

Yi(0) = 1 + 0 · 291(Xi5 +Xi6 +Xi7 +Xi8 +Xi9 +Xi10) + ε0i,

where ε1i and ε0i are independent standard normal random variables. We use the same way as in425

the main paper to generate misspecified models. Four different estimators are compared in Table
2.
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Table 2: Bias, standard error (Std Err), root-mean-squared error (RMSE), coverage probabil-
ity of 95% confidence intervals (Coverage), length of 95% confidence intervals (CI length)
for the estimation of the average treatment effect. Four methods – the proposed method (HD-
CBPS), approximate residual balancing (RB), regularized augmented inverse probability weight-
ing (AIPW), and double selection (D-SELECT) – are compared (ρ = 0).

n = 500 d = 1000 d = 2000

HD-CBPS RB AIPW D-SELECT HD-CBPS RB AIPW D-SELECT

(1) Both models are correct
Bias -0·0935 -0·1186 -0·1642 -0·1047 -0·0252 -0·0290 -0·0087 -0·0511
Std Err 0·0986 0·1087 0·0945 0·0993 0·0898 0·0982 0·0863 0·0927
RMSE 0·1359 0·1609 0·1894 0·1443 0·0966 0·1064 0·0871 0·1059
Coverage 0·915 0·970 0·920 0·890 0·925 0·970 0·950 0·950
CI length 0·3876 0·4397 0·3719 0·4286 0·3483 0·4301 0·3350 0·4263

(2) Propensity score model is misspecified
Bias 0·0233 0·0312 -0·0338 0·0923 0·0232 0·0184 0·0251 -0·0473
Std Err 0·0931 0·1014 0·0932 0·1064 0·0906 0·1055 0·0913 0·0926
RMSE 0·0987 0·1105 0·1112 0·1117 0·0963 0·1086 0·0979 0·1040
Coverage 0·930 0·975 0·895 0·925 0·930 0·945 0·920 0·960
CI length 0·3530 0·4447 0·3422 0·7331 0·3419 0·4271 0·3379 0·4083

(3) Outcome model is misspecified
Bias 0·0197 0·0326 0·0508 -0·0234 -0·0560 -0·0509 -0·0617 -0·0246
Std Err 0·0999 0·1022 0·0895 0·1052 0·0963 0·1047 0·0925 0·1024
RMSE 0·1036 0·1120 0·1147 0·1077 0·1246 0·1269 0·1271 0·1053
Coverage 0·920 0·965 0·895 0·965 0·910 0·935 0·855 0·950
CI length 0·3555 0·4466 0·3388 0·4263 0·3455 0·4411 0·3360 0·4219

(4) Both models are misspecified
Bias 0·0206 0·0416 0·0437 -0·0850 -0·0077 -0·0049 -0·0124 -0·0586
Std Err 0·0891 0·1062 0·0902 0·1095 0·0897 0·1049 0·0941 0·0972
RMSE 0·0937 0·1213 0·1093 0·1386 0·0903 0·1050 0·0956 0·1134
Coverage 0·950 0·945 0·920 0·870 0·970 0·975 0·945 0·930
CI length 0·3608 0·4517 0·3524 0·4340 0·3706 0·4679 0·3630 0·4345

In Tables 3 and 4, we consider the following data generating model. We generate the binary
treatment Ti using the logistic regression model of the form, π(Xi) = 1− 1/{1 + exp(−Xi1 +
Xi2/2−Xi3/4−Xi4/10)}. The potential outcomes are generated from the linear regression 430

models:

Yi(1) = 2 + 0 · 137(Xi5 +Xi6 +Xi7 +Xi8) + ε1i,

Yi(0) = 1 + 0 · 291(Xi5 +Xi6 +Xi7 +Xi8 +Xi9 +Xi10) + ε0i.

In this data generating model, we assume there are no confounding variables. We consider n =
500, 1000 in Table 3 and Table 4, respectively.
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Table 3: Simulation results for data generating processes without confounding variables under
n = 500.

n = 500 d = 1000 d = 2000

HD-CBPS RB AIPW D-SELECT HD-CBPS RB AIPW D-SELECT

(1) Both models are correct
Bias -0·0294 -0·0350 -0·1100 -0·0950 -0·0693 -0·0772 -0·1293 -0·0579
Std Err 0·0904 0·0977 0·0824 0·0970 0·1031 0·1131 0·0961 0·1140
RMSE 0·0951 0·1037 0·1374 0·1358 0·1242 0·1369 0·1611 0·1279
Coverage 0·955 0·960 0·855 0·890 0·880 0·895 0·795 0·930
CI length 0·3990 0·4401 0·3823 0·4295 0·3869 0·4349 0·3699 0·4600

(2) Propensity score model is misspecified
Bias -0·0683 -0·1090 -0·1564 -0·0581 -0·0454 -0·0718 -0·1263 0·0456
Std Err 0·1016 0·1157 0·0983 0·1614 0·0993 0·1131 0·0979 0·1142
RMSE 0·1225 0·1590 0·1847 0·1715 0·1092 0·1340 0·1560 0·1229
Coverage 0·905 0·840 0·575 0·960 0·900 0·890 0·710 0·930
CI length 0·3897 0·4423 0·3757 0·6469 0·3840 0·4386 0·3712 0·4806

(3) Outcome model is misspecified
Bias -0·0097 -0·0190 -0·1039 -0·0382 0·0315 -0·0383 -0·0765 -0·0174
Std Err 0·1002 0·1101 0·0962 0·1193 0·0959 0·1007 0·0927 0·1113
RMSE 0·1007 0·1118 0·1416 0·1252 0·1010 0·1077 0·1202 0·1127
Coverage 0·965 0·965 0·825 0·980 0·940 0·960 0·885 0·960
CI length 0·4033 0·4458 0·3867 0·4860 0·3927 0·4590 0·3769 0·4791

(4) Both models are misspecified
Bias -0·0294 -0·1079 -0·1857 -0·0850 -0·0184 -0·0555 -0·1383 -0·0586
Std Err 0·1222 0·1106 0·0952 0·1095 0·0994 0·1110 0·0950 0·0972
RMSE 0·1257 0·1545 0·2087 0·1386 0·1011 0·1241 0·1678 0·1135
Coverage 0·895 0·865 0·490 0·870 0·950 0·940 0·710 0·930
CI length 0·4024 0·4601 0·3804 0·4340 0·3922 0·4539 0·3769 0·4345

S7·4. Simulation Results for Logistic Outcome Model
Next, we consider the binary outcome and assume that the potential outcomes are generated435

by the following logistic regression models,

pr{Yi(1) = 1 | Xi} = 1− 1/{1 + exp(2 + 0.137Xi1 + 0.137Xi2 + 0.137Xi3 + 0.137Xi7

+ 0.137Xi8 + 0.137Xi9)},
pr{Yi(0) = 1 | Xi} = 1− 1/{1 + exp(1 + 0.291Xi1 + 0.291Xi2 + 0.291Xi3 + 0.291Xi5

+ 0.291Xi6 + 0.291Xi7 + 0.291Xi8 + 0.291Xi9)}.

When the outcome variable is binary, the approximate residual balancing method is not di-
rectly applicable. Thus, we only compare our method with the regularized augmented inverse
probability weighted and double selection methods. For the logistic outcome model, we report
the bias, standard error, standardized root mean squared error, coverage probability of 95% con-440

fidence intervals, and length of 95% confidence intervals for estimating the average treatment
effect. Similarly, the misspecified models are considered. We consider n = 500, 1000 in Table
5 and Table 6, respectively. It is seen that the proposed method outperforms the regularized
augmented inverse probability weighted and double selection methods in almost all scenarios.
In contrast to augmented inverse probability weighted estimator, the proposed confidence inter-445
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Table 4: Simulation results for data generating processes without confounding variables under
n = 1000.

n = 1000 d = 1000 d = 2000

HD-CBPS RB AIPW D-SELECT HD-CBPS RB AIPW D-SELECT

(1) Both models are correct
Bias -0·0135 -0·0059 -0·0423 -0·0050 0·0121 0·0188 -0·0146 0·0119
Std Err 0·0669 0·0777 0·0647 0·0713 0·0728 0·0806 0·0727 0·0820
RMSE 0·0682 0·0779 0·0772 0·0714 0·0739 0·0815 0·0742 0·0828
Coverage 0·960 0·950 0·925 0·960 0·925 0·940 0·925 0·935
CI length 0·2786 0·2998 0·2694 0·2916 0·2736 0·2952 0·2682 0·3107

(2) Propensity score model is misspecified
Bias -0·0145 -0·0186 -0·0476 -0·0116 0·0103 0·0071 -0·0231 0·0185
Std Err 0·0607 0·0694 0·0605 0·0650 0·0621 0·0725 0·0619 0·0669
RMSE 0·0624 0·0718 0·0770 0·0660 0·0629 0·0728 0·0660 0·0694
Coverage 0·975 0·975 0·920 0·970 0·970 0·955 0·955 0·950
CI length 0·2763 0·2996 0·2695 0·2895 0·2730 0·2979 0·2682 0·2876

(3) Outcome model is misspecified
Bias -0·0088 0·0082 -0·0480 -0·0428 -0·0081 -0·0017 -0·0517 0·0396
Std Err 0·0661 0·0721 0·0643 0·0670 0·0694 0·0747 0·0670 0·0692
RMSE 0·0667 0·0726 0·0803 0·0795 0·0699 0·0747 0·0846 0·0797
Coverage 0·965 0·955 0·925 0·945 0·965 0·970 0·885 0·935
CI length 0·2852 0·3100 0·2760 0·3002 0·2848 0·3139 0·2726 0·3010

(4) Both models are misspecified
Bias -0·0155 -0·0088 -0·0504 -0·0056 0·0108 -0·0007 -0·0514 0·0058
Std Err 0·0626 0·0696 0·0615 0·0693 0·0597 0·0737 0·0603 0·0681
RMSE 0·0645 0·0702 0·0795 0·0695 0·0607 0·0737 0·0792 0·0683
Coverage 0·980 0·975 0·915 0·970 0·990 0·970 0·940 0·970
CI length 0·2869 0·3103 0·2768 0·2983 0·2835 0·3144 0·2749 0·3049

vals under the logistic outcome model have accurate coverage probabilities under misspecified
models, which is consistent with our theoretical results.

S7·5. Simulation Results for Non-sparse Models
In this section, we consider the following non-sparse data generating process. In the first sce-

nario, we generate the treatment variable and outcome variables from

pr(Ti = 0|Xi) = {1 + exp(−Xi1 + 0.5Xi2 − 0.25Xi3 − 0.1Xi4 − 0.01Xi5 + 0.01Xi6}−1,

Yi(1) = 2 +

d∑
j=3

j−`Xij + ε1i, Yi(0) = 1 + 2

d∑
j=3

j−`Xij + ε0i,

where ` = 2. Apparently, the outcome models depend on almost all variables, and we let the
coefficients shrink to 0 for large j. The coefficients for large j represent the weak signals in the 450

model which may not be selected by the penalized estimators. Thus, in the setting the variable
selection consistency is impossible for the outcome models. In the second scenario, we further
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Table 5: Simulation results for logistic outcome models with n = 500.

n = 500 d = 1000 d = 2000

AIPW D-SELECT HD-CBPS AIPW D-SELECT HD-CBPS

(1) Both models are correct
Bias 0·0339 0·0298 0·0295 0·0484 0·0296 0·0226
Std Err 0·0480 0·0428 0·0381 0·0504 0·0437 0·0394
RMSE 0·0587 0·0522 0·0482 0·0698 0·0528 0·0455
Coverage 0·830 0·915 0·960 0·795 0·890 0·960
CI length 0·1645 0·1765 0·1908 0·1633 0·1777 0·1805

(2) Propensity score model is misspecified
Bias 0·0771 0·0311 0·0274 0·0582 0·0211 0·0220
Std Err 0·0454 0·0478 0·0329 0·0480 0·0466 0·0365
RMSE 0·0895 0·0570 0·0428 0·0754 0·0511 0·0426
Coverage 0·355 0·905 0·920 0·560 0·905 0·890
CI length 0·1272 0·1908 0·1420 0·1262 0·1719 0·1363

(3) Outcome model is misspecified
Bias 0·0219 -0·0070 -0·0070 0·0560 0·0290 0·0228
Std Err 0·0402 0·0427 0·0310 0·0455 0·0422 0·0330
RMSE 0·0458 0·0433 0·0318 0·0722 0·0512 0·0402
Coverage 0·850 0·980 0·975 0·550 0·910 0·895
CI length 0·1273 0·1892 0·1461 0·1244 0·1760 0·1308

(4) Both models are misspecified
Bias 0·0427 0·0241 0·0152 0·0226 0·0259 0·0074
Std Err 0·0431 0·0504 0·0360 0·0407 0·0397 0·0350
RMSE 0·0607 0·0558 0·0391 0·0466 0·0474 0·0357
Coverage 0·665 0·895 0·925 0·860 0·920 0·950
CI length 0·1281 0·1911 0·1417 0·1287 0·1673 0·1396

allow the propensity score model to be also non-sparse:

pr(Ti = 0|Xi) = {1 + exp(−Xi1 + 0.5Xi2 − 0.25Xi3 − 0.1Xi4

− 0.01Xi5 + 0.01Xi6 +

d∑
j=7

j−`Xij)}−1,455

where ` = 2. The same non-sparse outcome models are used. Thus, in this setting, both propen-
sity score and outcome models are non-sparse. The results in Table 7 show that the proposed
method can still accurately estimate the treatment effect when there exist weak signals. Again,
this empirical result is consistent with our theoretical result which says that the asymptotic infer-
ence based on the covariate balancing approach does not require variable selection consistency460

as a priori. In addition, it also implies that our method is robust to minor violation of the spar-
sity assumption. We also consider a more challenging non-sparse case with ` = 1, that is the
coefficients decay to 0 more slowly. The results are shown in Table 8. We observe the same
phenomenon.

S7·6. Simulation Results Under Moderate Dimension465

In this section, we compare eight methods under moderate dimension: our method, approxi-
mate residual balancing method (Athey et al., 2018), regularized augmented inverse probability
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Table 6: Simulation results for logistic outcome models with n = 1000.

n = 1000 d = 1000 d = 2000

AIPW D-SELECT HD-CBPS AIPW D-SELECT HD-CBPS

(1) Both models are correct
Bias -0·0251 0·0043 0·0081 -0·0307 0·0098 0·0092
Std Err 0·0300 0·0302 0·0291 0·0282 0·0303 0·0275
RMSE 0·0391 0·0305 0·0302 0·0417 0·0318 0·0290
Coverage 0·890 0·950 0·960 0·871 0·929 0·971
CI length 0·1233 0·1147 0·1329 0·1219 0·1213 0·1348

(2) Propensity score model is misspecified
Bias 0·0170 0·0018 0·0039 0·0198 0·0014 0·0034
Std Err 0·0288 0·0264 0·0256 0·0284 0·0373 0·0259
RMSE 0·0335 0·0265 0·0259 0·0346 0·0373 0·0261
Coverage 0·850 0·965 0·935 0·810 0·942 0·956
CI length 0·0980 0·1129 0·1017 0·0969 0·1491 0·1036

(3) Outcome model is misspecified
Bias 0·0482 0·0034 0·0051 0·00253 0·0053 0·0035
Std Err 0·0315 0·0395 0·0241 0·0293 0·0311 0·0245
RMSE 0·0576 0·0397 0·0246 0·0387 0·0315 0·0248
Coverage 0·480 0·975 0·960 0·745 0·960 0·955
CI length 0·0942 0·1575 0·1041 0·0934 0·1219 0·0983

(4) Both models are misspecified
Bias 0·0199 -0·0015 -0·0028 0·0126 -0·0289 -0·0113
Std Err 0·0302 0·0279 0·0252 0·0323 0·0936 0·0282
RMSE 0·0362 0·0280 0·0254 0·0346 0·0980 0·0304
Coverage 0·780 0·975 0·960 0·845 0·985 0·945
CI length 0·0966 0·1211 0·1104 0·0982 0·2793 0·1152

weighted method (Farrell, 2015; Belloni et al., 2017), double selection (Belloni et al., 2014), cal-
ibrated likelihood (Tan, 2010), targeted maximum likelihood estimator (Van der Laan & Rose,
2011), covariate balancing propensity score (Imai & Ratkovic, 2014), inverse propensity score
weighted estimator with the maximum likelihood estimator. The first four methods are imple-
mented in the same way as before. The calibrated likelihood, targeted maximum likelihood es-
timator and covariate balancing propensity score are computed using the R packages iWeigReg,
tmle, CBPS, respectively. Since these existing softwares cannot directly incorporate the penalty
in the estimation procedures, we mainly focus on the comparison under moderate dimension (in
the sense that d2 is comparable to n). In particular, we consider two scenarios (n, d) = (500, 10)
and (n, d) = (500, 30). The data generating processes are the same as the ones used in the main
paper. The only difference is that we reduce d from thousands to d = 10, 30. The results are
shown in Tables 9 and 10. It shows that our method is comparable to these well established meth-
ods for low dimensional problems, such as augmented inverse probability weighted, calibrated
likelihood and targeted maximum likelihood methods. Recall that for the regularized augmented
inverse probability weighted estimator µ̂1, we show that

µ̂1 − µ∗1 = Op

({(s1 ∨ s2) log(d ∨ n)

n

}1/2)
,

which is slower than the rate of our estimator. However, when d is relatively small and fixed, µ̂1

reduces to the root-n rate up to a logarithmic factor of n, which is identical to our estimator. Thus,
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Table 7: Simulation results for non-sparse models with n = 500, d = 1000 and ` = 2.

Outcome models are non-sparse Outcome and propensity score models are non-sparse

HD-CBPS RB AIPW D-SELECT HD-CBPS RB AIPW D-SELECT

(1) Both models are correct
Bias -0·0213 -0·0073 -0·0400 -0·0025 -0·0275 -0·0095 -0·0352 0·0117
Std Err 0·0899 0·0997 0·0870 0·1183 0·0916 0·1047 0·0909 0·1014
RMSE 0·0924 0·1000 0·0958 0·1184 0·0957 0·1051 0·0975 0·1021
Coverage 0·955 0·965 0·920 0·960 0·920 0·965 0·920 0·965
CI length 0·3559 0·4215 0·3365 0·4510 0·3459 0·4100 0·3384 0·4172

(2) Propensity score model is misspecified
Bias -0·0085 -0·0148 -0·0476 -0·0025 -0·0066 -0·0004 -0·0283 -0·0068
Std Err 0·0877 0·1002 0·0832 0·1168 0·0951 0·1058 0·0949 0·0978
RMSE 0·0881 0·1013 0·0959 0·1168 0·0954 0·1058 0·0990 0·0980
Coverage 0·950 0·970 0·910 0·975 0·945 0·940 0·895 0·960
CI length 0·3563 0·4261 0·3361 0·5075 0·3476 0·4091 0·3400 0·3705

(3) Outcome model is misspecified
Bias -0·0040 -0·0020 -0·0407 -0·0146 -0·0003 0·0105 -0·0125 0·0136
Std Err 0·0969 0·1046 0·0919 0·1137 0·0905 0·1045 0·0924 0·1091
RMSE 0·0970 0·1046 0·1005 0·1146 0·0905 0·1050 0·0933 0·1100
Coverage 0·925 0·965 0·905 0·955 0·960 0·950 0·940 0·960
CI length 0·3545 0·4215 0·3344 0·4626 0·3446 0·4085 0·3389 0·4161

(4) Both models are misspecified
Bias 0·0009 -0·0199 -0·0476 0·0067 -0·0015 -0·0038 -0·0043 0·0186
Std Err 0·0992 0·1118 0·0955 0·1271 0·0916 0·1084 0·0902 0·0929
RMSE 0·0993 0·1136 0·1067 0·1272 0·0916 0·1085 0·0903 0·0948
Coverage 0·920 0·945 0·885 0·955 0·945 0·950 0·935 0·960
CI length 0·3602 0·42327 0·3360 0·4887 0·3504 0·4093 0·3372 0·3739

the improvement of the convergence rate does not occur in low dimensional case. We believe this
is the main reason why our method has similar performance to these well established methods.
The inverse probability weighted estimator demonstrates larger bias and has wider confidence470

intervals when the propensity score model is misspecified. All the other methods lead to fairly
accurate coverage probability provided either the propensity score model or outcome models is
correctly specified.

S7·7. Comparison with Normalized Horvitz-Thompson Estimator
Table 11 is to compare the proposed method with the so-called normalized inverse probability

weighted. The normalized inverse probability weighted estimator is defined as

µ̂NIPW =

∑n
i=1 Ti/π̂iYi∑n
i=1 Ti/π̂i

−
∑n

i=1 (1− Ti)/(1− π̂i)Yi∑n
i=1 (1− Ti)/(1− π̂i)

,

where π̂i is the estimated propensity score for the ith sample based on the penalized maximum475

likelihood estimation. The confidence interval of µ̂NIPW is obtained by the bootstrap method.
We generate the binary treatment Ti using the logistic regression model of the form, π(Xi) =

1− 1/{1 + exp(−Xi1 +Xi2/2−Xi3/4−Xi4/10−Xi5/10 +Xi6/10)}. The potential out-
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Table 8: Simulation results for non-sparse models with n = 500, d = 1000 and ` = 1.

Outcome models are non-sparse Outcome and propensity score models are non-sparse

HD-CBPS RB AIPW D-SELECT HD-CBPS RB AIPW D-SELECT

(1) Both models are correct
Bias -0.0051 -0.0022 -0.0047 -0.0033 0.0079 0.0123 0.0064 -0.0151
Std Err 0.0898 0.0970 0.0894 0.1176 0.0951 0.1040 0.0951 0.1568
RMSE 0.0900 0.0970 0.0895 0.1176 0.0955 0.1048 0.0953 0.1575
Coverage 0.9500 0.9600 0.9300 0.9650 0.9192 0.9394 0.9040 0.9747
CI length 0.3494 0.4079 0.3335 0.4552 0.3467 0.4080 0.3309 0.6406

(2) Propensity score model is misspecified
Bias -0.0041 0.0020 -0.0057 -0.0056 0.0083 0.0172 0.0030 0.0041
Std Err 0.0930 0.0960 0.0938 0.0963 0.0936 0.1051 0.0942 0.0941
RMSE 0.0930 0.0960 0.0940 0.0965 0.0940 0.1065 0.0942 0.0942
Coverage 0.9350 0.9600 0.9200 0.9450 0.9343 0.9197 0.9343 0.9489
CI length 0.3425 0.3980 0.3337 0.3681 0.3491 0.4041 0.3404 0.3723

(3) Outcome model is misspecified
Bias -0.0121 -0.0203 -0.0133 -0.0266 0.0053 -0.0021 0.0058 -0.0039
Std Err 0.1005 0.1080 0.0947 0.1324 0.0952 0.1043 0.0899 0.1263
RMSE 0.1012 0.1099 0.0956 0.1350 0.0954 0.1043 0.0901 0.1263
Coverage 0.9300 0.9400 0.9100 0.9450 0.9750 0.9750 0.9600 0.9550
CI length 0.3635 0.4192 0.3310 0.4964 0.3622 0.4204 0.3323 0.4951

(4) Both models are misspecified
Bias 0.0098 -0.0018 0.0109 0.0099 0.0010 -0.0057 0.0006 -0.0017
Std Err 0.0945 0.1074 0.0987 0.1027 0.0871 0.1074 0.0920 0.0970
RMSE 0.0950 0.1074 0.0993 0.1031 0.0871 0.1075 0.0920 0.0970
Coverage 0.9300 0.9750 0.9100 0.9350 0.9350 0.9350 0.9200 0.9400
CI length 0.3443 0.4118 0.3336 0.3791 0.3448 0.4137 0.3339 0.3831

comes are generated from the linear regression models:

Yi(1) = 2 + 0 · 137(Xi5 +Xi6 +Xi7 +Xi8) + ε1i,

Yi(0) = 1 + 0 · 291(Xi5 +Xi6 +Xi7 +Xi8 +Xi9 +Xi10) + ε0i,

where ε1i and ε0i are independent standard normal random variables. We use the same way as in 480

the main paper to generate misspecified models. We find that the normalized inverse probability
weighted estimator has smaller mean squared error when the dimension d is small, say d = 10.
Given the large sample size n = 1000, we do not expect our method to outperform the classical
proposals, including the normalized inverse probability weighted, in this low-dimensional case.
Indeed, this phenomenon is consistent with the more extensive simulation studies under moder- 485

ate dimension conducted in Section S7·6. However, as the dimension d grows to 30, the proposed
method starts to have smaller or at least comparable mean squared error in the moderate dimen-
sional case. Finally, in the very high dimensional case (d = 1000, 2000), the proposed method
clearly shows smaller mean squared error and more accurate coverage probability.

S7·8. Sensitivity Analysis for Tuning Parameters 490

In this section, we conduct sensitivity analysis to examine whether our numerical results
are sensitive to the tuning parameters. We generate the binary treatment Ti using the logistic
regression model of the form, π(Xi) = 1− 1/{1 + exp(−Xi1 +Xi2/2−Xi3/4−Xi4/10−
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Table 9: Simulation results under moderate dimension, n = 500, d = 10. The proposed method
(HD-CBPS) is compared with the approximate residual balancing (RB), regularized augmented
inverse probability weighted (AIPW), double selection (D-SELECT), calibrated likelihood (CL),
targeted maximum likelihood estimator (TMLE), covariate balancing propensity score (CBPS),
and inverse propensity score weighted estimator with the maximum likelihood estimator (IPW).

HD-CBPS RB AIPW D-SELECT CL TMLE CBPS IPW

(1) Both models are correct
Bias 0·0878 0·0884 0·0269 0·0889 0·0871 0·0923 -0·1638 0·1225
Std Err 0·1031 0·1009 0·0983 0·1019 0·1034 0·1052 0·0976 0·1032
RMSE 0·1354 0·1341 0·1019 0·1352 0·1352 0·1400 0·1907 0·1602
Coverage 0·955 0·955 0·940 0·965 0·975 0·945 0·915 1·000
CI length 0·4060 0·3949 0·3837 0·4078 0·4130 0·3896 0·5885 0·5070

(2) Propensity score model is misspecified
Bias 0·0889 0·0907 0·0276 0·0895 0·0908 0·1028 0·0634 0·0883
Std Err 0·1042 0·1074 0·0971 0·1008 0·1096 0·1106 0·1002 0·1026
RMSE 0·1370 0·1406 0·1009 0·1348 0·1423 0·1510 0·1186 0·1354
Coverage 0·965 0·970 0·945 0·980 0·975 0·925 0·960 0·970
CI length 0·4066 0·4149 0·3829 0·4056 0·4143 0·3986 0·4819 0·5050

(3) Outcome model is misspecified
Bias 0·0940 0·0899 0·0272 0·0954 0·0901 0·0939 -0·1343 0·1373
Std Err 0·0969 0·0953 0·0935 0·0953 0·0964 0·0994 0·0908 0·0968
RMSE 0·1350 0·1310 0·0973 0·1348 0·1320 0·1367 0·1621 0·1680
Coverage 0·955 0·980 0·940 0·965 0·960 0·940 0·950 1·000
CI length 0·4086 0·4005 0·3845 0·4091 0·4146 0·3873 0·5882 0·5797

(4) Both models are misspecified
Bias 0·0215 -0·0384 -0·0093 0·0414 0·0452 0·0643 0·0162 0·0302
Std Err 0·1023 0·0887 0·0833 0·0846 0·0919 0·0926 0·0850 0·0876
RMSE 0·1045 0·0966 0·0838 0·0942 0·1024 0·1127 0·0865 0·0927
Coverage 0·950 0·970 0·990 0·960 0·955 0·920 0·995 1·000
CI length 0·4125 0·4220 0·3889 0·4099 0·4204 0·4079 0·5245 0·5452

Xi5/10 +Xi6/10)}. The potential outcomes are generated from the linear regression models:

Yi(1) = 2 + 0 · 137(Xi5 +Xi6 +Xi7 +Xi8) + ε1i,

Yi(0) = 1 + 0 · 291(Xi5 +Xi6 +Xi7 +Xi8 +Xi9 +Xi10) + ε0i,

where ε1i and ε0i are independent standard normal random variables. We consider n = 500 and495

d = 1000. The proposed method contains two tuning parameters λ in the propensity score model,
λ′ in the outcome model. In our method, we recommend the cross-validation method for choos-
ing tuning parameters. In this example, the cross-validation method leads to tuning parameters
λCV = 0.0496 and λ′CV = 0.1674 on average. In Table 12, we consider two cases. In case (1):
we estimate the treatment effect by changing λ in the propensity score model from the cross-500

validation value by a small number and fixing λ′ at the cross-validation value. In case (2): we
estimate the treatment effect by changing λ′ in the outcome model and fixing λ at the cross-
validation value. We use the grid [λCV − 0 · 02, λCV + 0 · 02], because by further increasing
λCV all variables in the propensity score model are shrunk to 0 and similarly by further decreas-
ing λCV most variables are kept in the propensity score model leading to slow convergence of505

the gradient descent algorithms for solving the penalized optimization problem. This seems to



High-Dimensional Propensity Score 35

Table 10: Simulation results under moderate dimension, n = 500, d = 30.

HD-CBPS RB AIPW D-SELECT CL TMLE CBPS IPW

(1) Both models are correct
Bias -0·0002 -0·0107 0·0160 0·0061 -0·0099 -0·0182 -0·0467 -0·0290
Std Err 0·0703 0·0740 0·0680 0·0753 0·0776 0·0761 0·0706 0·0749
RMSE 0·0703 0·0748 0·0699 0·0755 0·0782 0·0783 0·0847 0·0803
Coverage 0·950 0·965 0·915 0·950 0·945 0·945 0·955 0·975
CI length 0·2726 0·2919 0·2521 0·3012 0·2959 0·2802 0·3304 0·3724

(2) Propensity score model is misspecified
Bias -0·0036 -0·0139 0·0160 0·0018 -0·0169 -0·0156 -0·0202 0·0813
Std Err 0·0660 0·0716 0·0635 0·0714 0·0731 0·0726 0·0660 0·0748
RMSE 0·0661 0·0730 0·0655 0·0714 0·0750 0·0742 0·0690 0·1104
Coverage 0·960 0·965 0·965 0·970 0·945 0·950 0·995 1·000
CI length 0·2695 0·2629 0·2526 0·3205 0·3001 0·3027 0·3255 0·4227

(3) Outcome model is misspecified
Bias 0·0042 -0·0008 0·0157 0·0043 0·0063 -0·0025 -0·0187 -0·0032
Std Err 0·0714 0·0751 0·0687 0·0767 0·0768 0·0770 0·0725 0·0746
RMSE 0·0715 0·0751 0·0705 0·0768 0·0770 0·0770 0·0748 0·0746
Coverage 0·950 0·945 0·935 0·955 0·955 0·935 0·985 0·990
CI length 0·2849 0·2967 0·2606 0·3067 0·3014 0·2944 0·3522 0·3983

(4) Both models are misspecified
Bias 0·0262 0·0128 0·0255 0·0161 0·0126 0·0119 0·0844 0·1170
Std Err 0·0662 0·0676 0·0620 0·0765 0·0728 0·0730 0·0707 0·0766
RMSE 0·0712 0·0688 0·0670 0·0782 0·0739 0·0740 0·1100 0·1398
Coverage 0·955 0·970 0·940 0·955 0·960 0·960 0·900 0·965
CI length 0·4125 0·4220 0·3889 0·4099 0·4204 0·4079 0·5245 0·5452

be a reasonable choice. Table 12 shows that the mean squared error and the coverage probability
of our method are not very sensitive to the tuning parameters.
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Table 11: Comparison with normalized inverse probability weighted (N-IPW) under n = 1000

d = 10 d = 30 d = 1000 d = 2000

HD-CBPS N-IPW HD-CBPS N-IPW HD-CBPS N-IPW HD-CBPS N-IPW

(1) Both models are correct
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Std Err 0·0597 0·0610 0·0670 0·0706 0·0620 0·0634 0·0638 0·0657
RMSE 0·0802 0·0632 0·0795 0·0872 0·0620 0·0695 0·0655 0·1337
Coverage 0·945 0·990 0·955 0·945 0·975 0·960 0·965 0·740
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