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A.1 Estimation and Inference for Fixed ITRs with No Budget Constraint

A.1.1 The Population Average Value

For a fixed ITR with no budget constraint, the following unbiased estimator of the population

average value (Eqn (1)), based on the experimental data Z, is used in the literature (e.g., Qian

and Murphy, 2011),

λ̂f (Z) =
1

n1

n∑
i=1

YiTif(Xi) +
1

n0

n∑
i=1

Yi(1− Ti)(1− f(Xi)). (A1)

Under Neyman’s repeated sampling framework, it is straightforward to derive the unbiasedness and

variance of this estimator where the uncertainty is based solely on the random sampling of units

and the randomization of treatment alone. The results are summarized as the following theorem.

Theorem A1 (Unbiasedness and Variance of the Population Average Value Estima-
tor) Under Assumptions 1,2, and 3, the expectation and variance of the population average value
estimator defined in Eqn (A1) are given by,

E{λ̂f (Z)} − λf = 0, V{λ̂f (Z)} =
E(S2

f1)

n1
+

E(S2
f0)

n0

where S2
ft =

∑n
i=1(Yfi(t)−Yf (t))2/(n−1) with Yfi(t) = 1{f(Xi) = 1}Yi(t) and Yf (t) =

∑n
i=1 Yfi(t)/n

for t = {0, 1}.

Proof is straightforward and hence omitted.
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A.1.2 The Population Average Prescriptive Effect (PAPE)

To estimate the PAPE with no budget constraint (Eqn (2)), we propose the following estimator,

τ̂f (Z) =
n

n− 1

[
1

n1

n∑
i=1

YiTif(Xi) +
1

n0

n∑
i=1

Yi(1− Ti)(1− f(Xi))

−
p̂f
n1

n∑
i=1

YiTi −
1− p̂f
n0

n∑
i=1

Yi(1− Ti)

]
(A2)

where p̂f =
∑n

i=1 f(Xi)/n is a sample estimate of pf , and the term n/(n − 1) is due to the finite

sample degree-of-freedom correction resulting from the need to estimate pf . The following theorem

proves the unbiasedness of this estimator and derives its exact variance.

Theorem A2 (Unbiasedness and Exact Variance of the PAPE Estimator) Under Assump-
tions 1, 2, and 3, the expectation and variance of the PAPE estimator defined Eqn (A2) are given
by,

E{τ̂f (Z)} = τf

V{τ̂f (Z)} =
n2

(n− 1)2

[
E(S̃2

f1)

n1
+

E(S̃2
f0)

n0
+

1

n2
{
τ2f − npf (1− pf )τ2 + 2(n− 1)(2pf − 1)τfτ

}]

where S̃2
ft =

∑n
i=1(Ỹfi(t)−Ỹf (t))2/(n−1) with Ỹfi(t) = (f(Xi)−p̂f )Yi(t), and Ỹf (t) =

∑n
i=1 Ỹfi(t)/n

for t = {0, 1}.

Note that E(S̃2
ft) does not equal V(Ỹfi(t)) because the proportion of treated units pf is estimated.

The additional term in the variance accounts for this estimation uncertainty of pf . The variance

of the proposed estimator can be consistently estimated by replacing the unknown terms, i.e., pf ,

τf , τ , E(S̃2
ft), with their unbiased estimates, i.e., p̂f , τ̂f ,

τ̂ =
1

n1

n∑
i=1

TiYi −
1

n0

n∑
i=1

(1− Ti)Yi, and Ê(S̃2
ft) =

1

nt − 1

n∑
i=1

1{Ti = t}(Ỹfi − Ỹft)2,

where Ỹfi = (f(Xi)− p̂f )Yi and Ỹft =
∑n

i=1 1{Ti = t}Ỹfi/nt.
To prove Theorem A2, we first consider the sample average prescription effect (SAPE),

τ sf =
1

n

n∑
i=1

{Yi(f(Xi))− p̂fYi(1)− (1− p̂f )Yi(0)} . (A3)

and its unbiased estimator,

τ̂ sf =
1

n1

n∑
i=1

YiTif(Xi) +
1

n0

n∑
i=1

Yi(1− Ti)(1− f(Xi))−
p̂f
n1

n∑
i=1

YiTi −
1− p̂f
n0

n∑
i=1

Yi(1− Ti) (A4)

This estimator differs from the estimator of the PAPE by a small factor, i.e., τ̂ sf = (n − 1)/nτ̂f .

The following lemma derives the expectation and variance in the Neyman framework. Thus, it

only requires the randomization-based finite sample inference and does not need Assumption 2.
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Lemma 1 (Unbiasedness and Exact Variance of the Estimator for the SAPE) Under
Assumptions 1, 2, and 3, the expectation and variance of the estimator of the PAPE given in
Eqn (A4) for estimating the SAPE defined in Eqn (A3) are given by,

E(τ̂ sf | On) = τ sf

V(τ̂ sf | On) =
1

n

(
n0
n1
S̃2
f1 +

n1
n0
S̃2
f0 + 2S̃f01

)
where On = {Yi(1), Yi(0),Xi}ni=1 and

S̃f01 =
1

n− 1

n∑
i=1

(Ỹfi(0)− Ỹfi(0))(Ỹfi(1)− Ỹfi(1)).

Proof We begin by computing the expectation with respect to the experimental treatment as-

signment, i.e., Ti,

E(τ̂ sf | On) = E

{
1

n1

n∑
i=1

f(Xi)TiYi(1) +
1

n0

n∑
i=1

(1− f(Xi))(1− Ti)Yi(0)

−
p̂f
n1

n∑
i=1

TiYi(1)−
1− p̂f
n0

n∑
i=1

(1− Ti)Yi(0)

∣∣∣∣∣ On
}

=
1

n

n∑
i=1

Yi(1)f(Xi) +
1

n

n∑
i=1

Yi(0)(1− f(Xi))−
p̂f
n

n∑
i=1

Yi(1)−
1− p̂f
n

n∑
i=1

Yi(0)

= τ sf

To derive the variance, we first rewrite the proposed estimator as,

τ̂ sf = τ sf +

n∑
i=1

Di(f(Xi)− p̂f )

(
Yi(1)

n1
+
Yi(0)

n0

)
where Di = Ti−n1/n. Thus, noting E(Di) = 0, E(D2

i ) = n0n1/n
2, and E(DiDj) = −n0n1/{n2(n−

1)} for i 6= j, after some algebra, we have,

V(τ̂ sf | On) = V(τ̂ sf − τ sf | On) = E

{ n∑
i=1

Di

(
Ỹfi(1)

n1
+
Ỹfi(0)

n0

)}2 ∣∣∣∣∣ On


=
1

n

(
n0
n1
S̃2
f1 +

n1
n0
S̃2
f0 + 2S̃f01

)
2

Now, we prove Theorem A2. Using Lemma 1 and the law of iterated expectation, we have,

E(τ̂ sf ) = E

[
1

n

n∑
i=1

{Yi(f(Xi))− p̂fYi(1)− (1− p̂f )Yi(0)}

]
.

We compute the following expectation for t = 0, 1,

E

(
n∑
i=1

p̂fYi(t)

)
= E

(
n∑
i=1

∑n
j=1 f(Xj)

n
Yi(t)

)
=

1

n
E


n∑
i=1

f(Xi)Yi(t) +
n∑
i=1

∑
j 6=i

f(Xj)Yi(t)


2



= E{f(Xi)Yi(t)}+ (n− 1)pfE(Yi(t)).

Putting them together yields the following bias expression,

E(τ̂ sf ) = E
[
{Yi(f(Xi))−

1

n
f(Xi)τi −

n− 1

n
pfτi − Yi(0)]

]
= τf −

1

n
E [{f(Xi)Yi(1)− (1− f(Xi))Yi(0)} − {pfYi(1)− (1− pf )Yi(0)}]

= τf −
1

n
Cov(f(Xi), τi).

where τi = Yi(1)− Yi(0). We can further rewrite the bias as,

− 1

n
Cov(f(Xi), τi) =

1

n
pf{E(τi | f(Xi) = 1)− τ}

=
1

n
pf (1− pf ){E(τi | f(Xi) = 1)− E(τi | f(Xi) = 0)}

=
τf
n
. (A5)

where τ = E(Yi(1)− Yi(0)). This implies the estimator for the PAPE is unbiased, i.e., E(τ̂f ) = τf .

To derive the variance, Lemma 1 implies,

V(τ̂f ) =
n2

(n− 1)2

[
V

(
1

n

n∑
i=1

{Ỹfi(1)− Ỹfi(0)}

)
+ E

{
1

n

(
n0
n1
S̃2
f1 +

n1
n0
S̃2
f0 + 2S̃f01

)}]
. (A6)

Applying Lemma 1 of Nadeau and Bengio (2000) to the first term within the square brackets yields,

V

(
1

n

n∑
i=1

{Ỹfi(1)− Ỹfi(0)}

)
= Cov(Ỹfi(1)−Ỹfi(0), Ỹfi(1)−Ỹfi(0))+

1

n
E(S̃2

f1+S̃2
f0−2S̃f01), (A7)

where i 6= j. Focusing on the covariance term, we have,

Cov(Ỹfi(1)− Ỹfi(0), Ỹfi(1)− Ỹfi(0))

= Cov

{f(Xi)−
1

n

n∑
i′=1

f(Xi′)

}
τi,

f(Xj)−
1

n

n∑
j′=1

f(Xj′)

 τj


= −2Cov

(
n− 1

n
f(Xi)τi,

1

n
f(Xi)τj

)
+
∑
i′ 6=i,j

Cov

(
1

n
f(Xi′)τi,

1

n
f(Xi′)τj

)

+2
∑
i′ 6=i,j

Cov

(
1

n
f(Xj)τi,

1

n
f(Xi′)τj

)
+ Cov

(
1

n
f(Xj)τi,

1

n
f(Xi)τj

)

= −2(n− 1)τ

n2
Cov (f(Xi), f(Xi)τi) +

(n− 2)τ2

n2
V(f(Xi))

+
2(n− 2)τ

n2
pfCov (f(Xi), τi) +

1

n2
{

Cov2 (f(Xi), τi) + 2pfτCov (f(Xi), τi)
}

=
1

n2
Cov2 (f(Xi), τi) +

(n− 2)τ2

n2
pf (1− pf ) +

2(n− 1)τ

n2
Cov (f(Xi), (pf − f(Xi))τi)

=
1

n2
[
τ2f + (n− 2)pf (1− pf )τ2 + 2(n− 1)τ {pfτf − (1− pf )E(f(Xi)τi)}

]
3



Individual Ti f(Xi) Yi Yi(0) Yi(1)

A 1 1 2 0 2
B 1 0 3 1 3
C 0 0 −1 −1 −1
D 0 1 1 1 0
E 1 0 3 0 3

Table A1: A Numerical Example for Binary Treatment Assignment and Outcomes

=
1

n2
[
τ2f + (n− 2)pf (1− pf )τ2 + 2(n− 1)τ {τf (2pf − 1)− (1− pf )pfτ}

]
=

1

n2
{
τ2f − npf (1− pf )τ2 + 2(n− 1)(2pf − 1)τfτ

}
,

where the third equality follows from the formula for the covariance of products of two ran-

dom variables (Bohrnstedt and Goldberger, 1969). Finally, combining this result with equa-

tions (A6) and (A7) yields,

V(τ̂f ) =
n2

(n− 1)2

[
E(S̃2

f1)

n1
+
E(S̃2

f0)

n0
+

1

n2
{
τ2f − npf (1− pf )τ2 + 2(n− 1)(2pf − 1)τfτ

}]
.

2

A potential complication with this estimator in practice is that its estimate (along with the

variance) would change under an additive transformation, i.e., Yi(t) → Yi(t) + δ for t = 0, 1 and

a given constant δ. This issue is not due to the specific construction of the proposed estimator.

It instead reflects the fundamental issue of many prescription effects including the population

average value and PAPE that they cannot be defined solely in terms of multiples of Yi(1)− Yi(0)

(see Appendix A.1.3 for a numerical example). One solution is to center the outcome variable such

that
∑n

i=1 YiTi/n1 +
∑n

i=1 Yi(1 − Ti)/n0 = 0 holds. This solution is motivated by the fact that

when the condition holds in the population (i.e. E(Yi(1) + Yi(0)) = 0), the variance of the PAPE

estimator is minimized.

A.1.3 A Numerical Example Showing the Lack of Additive Invariance for the Popu-

lation Average Value

Consider an ITR f : X → {0, 1}, and we would like to know its population average value. Table A1

shows an numerical example with the observed outcome Yi, the ITR f(Xi), the actual assignment

Ti, and the potential outcomes Yi(0), Yi(1). Then, in this example, we have n1 = 3 (A,B,E), n0 = 2

(C,D), and the population average value estimator would be:

λ̂f (Z) =
1

n1

n∑
i=1

YiTif(Xi) +
1

n0

n∑
i=1

Yi(1− Ti)(1− f(Xi))

=
1

3
(1 · 2 + 0 · 3 + 0 · 3) +

1

2
(1 · −1 + 0 · 1)

=
1

6

4



Now let us consider an additive transformation Yi(t)→ Yi(t) + 1 := Y ′i (t) for t = 0, 1, where every

outcome value is raised by 1. Then, its population average value estimator is now:

λ̂′f (Z) =
1

n1

n∑
i=1

Y ′i Tif(Xi) +
1

n0

n∑
i=1

Y ′i (1− Ti)(1− f(Xi))

=
1

3
(1 · 3 + 0 · 4 + 0 · 4) +

1

2
(1 · 0 + 0 · 2)

= 1

Note that the difference λ̂′f (Z)− λ̂f (Z) = 5
6 6= 1 does not equal to the amount of additive transfor-

mation. The problem arises because they are not multiples of Yi(1)−Yi(0) but rather they depend

on what the actual assignments of the ITR.

A.2 Proof of Theorem 1

We begin by deriving the variance. The derivation proceeds in the same fashion as the one for

Theorem A2. The main difference lies in the derivation of the covariance term, which we detail

below. First, we note that,

Pr(f(Xi, ĉp(f)) = 1) =

∫ ∞
−∞

Pr(f(Xi, c) = 1 | ĉp(f) = c)P (ĉp(f) = c)dc

=

∫ ∞
−∞

bnpc
n

P (ĉp(f) = c)dc

=
bnpc
n

,

where the second equality follows from the fact that once conditioned on ĉp(f) = c, exactly bnpc
out of n units will be assigned to the treatment condition. Given this result, we can compute the

covariance as follows,

Cov(Ỹi(1)− Ỹi(0), Ỹj(1)− Ỹj(0))

= Cov {(f(Xi, ĉp(f))− p) τi, (f(Xj , ĉp(f))− p) τj}
= Cov {f(Xi, ĉp(f))τi, f(Xj , ĉp(f))τj} − 2pCov (τi, f(Xj , ĉp(f))τj)

=
nbnpc(bnpc − 1)− bnpc2(n− 1)

n2(n− 1)
E(τi | f(Xi, ĉp(f)) = 1)2 − 2pCov (τi, f(Xj , ĉp(f))τj)

=
bnpc(bnpc − n)

n2(n− 1)
κ1(ĉp(f))2 +

2pbnpc(n− bnpc)
n2(n− 1)

(
κ1(ĉp(f))2 − κ1(ĉp(f))κ0(ĉp(f))

)
= (2p− 1)

bnpc(n− bnpc)
n2(n− 1)

κ1(ĉp(f))2 − 2pbnpc(n− bnpc)
n2(n− 1)

κ1(ĉp(f))κ0(ĉp(f))

=
bnpc(n− bnpc)
n2(n− 1)

{
(2p− 1)κ1(ĉp(f))2 − 2pκ1(ĉp(f))κ0(ĉp(f))

}
.

Combining this covariance result with the expression for the marginal variances yields the desired

variance expression for τ̂f (ĉp(f)).

Next, we derive the upper bound of bias. Using the same technique as the proof of Theorem A2,

we can rewrite the expectation of the proposed estimator as,

E(τ̂f (cp)) = E

[
1

n

n∑
i=1

{Yi (f(Xi, ĉp(f)))− pYi(1)− (1− p)Yi(0)}

]
.
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Now, define F (c) = P(s(Xi) ≤ c). Without loss of generality, assume ĉp(f) > cp (If this is not the

case, we simply switch the upper and lower limits of the integrals below). Then, the bias of the

estimator is given by,

|E(τ̂f (ĉp(f)))− τf (cp)| =

∣∣∣∣∣E
[

1

n

n∑
i=1

{Yi (f(Xi, ĉp(f)))− Yi (f(Xi, cp))}

]∣∣∣∣∣
=

∣∣∣∣∣Eĉp(f)
[∫ ĉp(f)

cp

E(τi | s(Xi) = c)dF (c)

]∣∣∣∣∣
=

∣∣∣∣∣EF (ĉp(f))

[∫ F (ĉp(f))

F (cp)
E(τi | s(Xi) = F−1(x))dx

]∣∣∣∣∣
≤ EF (ĉp(f))

[
|F (ĉp(f))− (1− p)| × max

c∈[cp,ĉp(f)]
|E(τi | s(Xi) = c)|

]
.

By the definition of ĉp(f), F (ĉp(f)) is the (n − bnpc)th order statistic of n independent uniform

random variables, and thus follows the Beta distribution with the shape and scale parameters equal

to n − bnpc and bnpc + 1, respectively. For the special case where p = 1, we define the 0th order

statistic of n uniform random variables to be 0, and by extension also define the “beta distribution”

with shape parameter ≤ 0 to be H(x) where H(x) is the Heaviside step function. Therefore, we

have,

P(|F (ĉp(f))−p| > ε) = 1−B(1−p+ε, n−bnpc, bnpc+1)+B(1−p−ε, n−bnpc, bnpc+1), (A8)

where B(ε, α, β) is the incomplete beta function, i.e.,

B(ε, α, β) =

∫ ε

0
tα−1(1− t)β−1dt.

Combining with the result above, the desired result follows. 2

A.3 Estimation and Inference of the Population Average Prescriptive Differ-

ence of Fixed ITRs

Theorem A3 (Bias and Variance of the PAPD Estimator with a Budget Constraint)
Under Assumptions 1, 2, and 3, the bias of the proposed estimator of the PAPD with a budget

constraint p defined in Eqn (8) can be bounded as follows,

Pĉp(f),ĉp(g)(|E{∆̂p(f, g,Z)−∆p(f, g) | ĉp(f), ĉp(g)}| ≥ ε) ≤ 1− 2B(1− p+ γp(ε), n− bnpc, bnpc+ 1)

+ 2B(1− p− γp(ε), n− bnpc, bnpc+ 1),

where any given constant ε > 0, B(ε, α, β) is the incomplete beta function (if α = 0 and β > 0, we
set B(ε, α, β) := H(ε) for all ε where H(ε) is the Heaviside step function), and

γp(ε) =
ε

maxc∈[cp(f)−ε, cp(f)+ε], d∈[cp(g)−ε, cp(g)+ε]{E(τi | sf (Xi) = c),E(τi | sg(Xi) = d)}
.

The variance of the estimator is,

V(∆̂p(f, g,Z)) =
E(S2

fgp1)

n1
+

E(S2
fgp0)

n0
+
bnpc(bnpc − n)

n2(n− 1)
(κf1(p)

2 + κg1(p)
2)

6



−2

(
Pr(f(Xi, ĉp(f)) = g(Xi, ĉp(g)) = 1)− bnpc

2

n2

)
κf1(p)κg1(p),

where S2
fgpt =

∑n
i=1(Yfgpi(t)− Yfgp(t))2/(n− 1) with Yfgpi(t) = {f(Xi, ĉp(f))− g(Xi, ĉp(g))}Yi(t)

and Yfgp(t) =
∑n

i=1 Yfgpi(t)/n for t = 0, 1.

To estimate the variance, it is tempting to replace all the unknown parameters with their sam-

ple analogues. However, unlike the case of the variance of the PAPE estimator under a budget

constraint (see Theorem 1), there is no useful identity for the joint probability Pr(f(Xi, ĉp(f)) =

g(Xi, ĉp(g)) = 1) under general g. Thus, an empirical analogue of ĉp(f) and ĉp(g) is not a good

estimate because it is solely based on one realization. Thus, we use the following conservative

bound,

−
(

Pr(f(Xi, ĉp(f)) = g(Xi, ĉp(g)) = 1)− bnpc
2

n2

)
κf1(p)κg1(p)

≤ bnpcmax{bnpc, n− bnpc}
n2(n− 1)

|κf1(p)κg1(p)|,

where the inequality follows because the maximum is achieved when the scoring rules of f and g,

i.e., sf (Xi) and sg(Xi), are perfectly correlated. We use this upper bound in our simulation and

empirical studies. In Section 5, we find that this upper bound estimate of the variance produces

only a small conservative bias.

Proof The proof of the bounds for the expectation and variance of the proposed estimator largely

follows the proof given in Appendix A.2. The only significant difference is the calculation of the

covariance term, which is given below.

Cov(Y ∗i (1)− Y ∗i (0), Y ∗j (1)− Y ∗j (0))

= Cov ({f(Xi, ĉp(f))− g(Xi, ĉp(g))} τi, {f(Xj , ĉp(f))− g(Xj , ĉp(g))} τj)
= Cov(f(Xi, ĉp(f))τi, f(Xj , ĉp(f))τj) + Cov(g(Xi, ĉp(g))τi, g(Xj , ĉp(g))τj)

−2 Cov(f(Xi, ĉp(f))τi, g(Xj , ĉp(g))τj)

=
bnpc(bnpc − n)

n2(n− 1)

(
κf1(p)

2 + κg1(p)
2
)
− 2 Cov(f(Xi, ĉp(f))τi, g(Xj , ĉp(g))τj)

=
bnpc(bnpc − n)

n2(n− 1)

(
κf1(p)

2 + κg1(p)
2
)

−2

(
Pr(f(Xi, ĉp(f)) = g(Xi, ĉp(g)) = 1)− bnpc

2

n2

)
κf1(p)κg1(p)

2

A.4 Proof of Theorem 2

The derivation of the variance expression in Theorem 2 proceeds in the same fashion as Theorem A2

(see Appendix A.2) with the only non-trivial change being the calculation of the covariance term.

Note Pr(f(Xi, ĉ k
n

(f)) = 1) = k/n for t = 0, 1 and nf = Z ∼ Binom(n, pf ). Then, we have:

Cov(Y ∗i (1)− Y ∗i (0), Y ∗j (1)− Y ∗j (0))

7



= Cov

 1

n

 nf∑
k=1

f(Xi, ĉk/n(f)) +
n∑

k=nf+1

f(Xi, ĉnf/n(f))

− 1

2

 τi, 1

n

 nf∑
k=1

f(Xj , ĉk/n(f)) +
n∑

k=nf+1

f(Xj , ĉnf/n(f))

− 1

2

 τj


= E

{
Cov

[{
1

n

(
Z∑
k=1

f(Xi, ĉk/n(f)) +

n∑
k=Z+1

f(Xi, ĉZ/n(f))

)
− 1

2

}
τi,{

1

n

(
Z∑
k=1

f(Xj , ĉk/n(f)) +

n∑
k=Z+1

f(Xj , ĉZ/n(f))

)
− 1

2

}
τj

∣∣∣ Z]}

+Cov

{
E

[{
1

n

(
Z∑
k=1

f(Xi, ĉk/n(f)) +

n∑
k=Z+1

f(Xi, ĉZ/n(f))

)
− 1

2

}
τi

∣∣∣ Z] ,
E

[{
1

n

(
Z∑
k=1

f(Xj , ĉk/n(f)) +
n∑

k=Z+1

f(Xj , ĉZ/n(f))

)
− 1

2

}
τj

∣∣∣ Z]}

= E

[
− 1

n

{
Z∑
k=1

k(n− k)

n2(n− 1)
κf1(k/n)κf0(k/n) +

Z(n− Z)2

n2(n− 1)
κf1(Z/n)κf0(Z/n)

}

− 2

n4(n− 1)

Z−1∑
k=1

Z∑
k′=k+1

k(n− k′)κf1(k/n)κf1(k
′/n)

−Z
2(n− Z)2

n4(n− 1)
κf1(Z/n)2 − 2(n− Z)2

n4(n− 1)

Z∑
k=1

kκf1(Z/n)κf1(k/n)

+
1

n4

Z∑
k=1

k(n− k)κf1(k/n)2

]
+ V

(
Z∑
i=1

i

n
κf1(i/n) +

(n− Z)Z

n
κf1(Z/n)

)
,

where the last equality is based on the results from Appendix A.2.

For the bias, we can rewrite Γf as,

Γf =

∫ pf

0
E{Yi(f(Xi, cp))}dp+ (1− pf )E{Yi(f(Xi, c

∗))} − 1

2
E{Yi(1) + Yi(0)},

and similarly its estimator Γ̂f as,

E(Γ̂f ) = E
{∫ p̂f

0
Yi(f(Xi, cp))dp

}
+ E{(1− p̂f )Yi(f(Xi, c

∗))} − 1

2
E{Yi(1) + Yi(0)}.

Therefore, the bias of the estimator is, using a derivation similar to Appendix A.2:∣∣∣E(Γ̂f )− Γf

∣∣∣ ≤ E
[
|pf − p̂f | max

c∈{min{p̂f ,pf},max{p̂f ,pf}}
E{Yi(f(Xi, c))− Yi(f(Xi, c

∗))}|

+|E{Yi(f(Xi, c
∗))} − E{Yi(f(Xi, ĉpf ))}|

]
≤ (ε+ 1) max

c∈[c∗−ε,c∗+ε]
|E[Yi(f(Xi, c))− Yi(f(Xi, c

∗))]|

≤ (ε+ 1)ε max
c∈[c∗−ε,c∗+ε]

|E(τi | s(Xi) = c)| .
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Now, taking the bound ε(1 + ε) ≤ 2ε for 0 ≤ ε ≤ 1 in Eqn (A8) of Appendix A.2, we have the

desired result. 2

A.5 Evaluation of an Estimated ITR with No Budget Constraint

Formally, we define an machine learning algorithm F to be a deterministic map from the space of

observable data Z = {X , T ,Y} to the space of ITRs F ,

F : Z −→ F .

We emphasize that no restriction is placed on the machine learning algorithm F or ITR f .

To extend the population average value (Eqn (1)), we consider the average performance of an

estimated ITR across training data sets of fixed size. First, for any given values of pre-treatment

variables Xi = x, we define the average treatment proportion under the estimated ITR obtained

by applying the machine learning algorithm F to training data Ztr of size n−m,

f̄F (x) = E{f̂Ztr(x) | Xi = x} = Pr(f̂Ztr(x) = 1 | Xi = x)

where the expectation is taken over the random sampling of training data Ztr. Although f̄F

depends on the training data size, we suppress it to ease notational burden.

Then, the population average value of an estimated ITR can be defined as,

λF = E
{
f̄F (Xi)Yi(1) + (1− f̄F (Xi))Yi(0)

}
(A9)

where the expectation is taken over the population distribution of {Xi, Yi(1), Yi(0)}. In contrast to

the population average value of a fixed ITR, this estimand accounts for the estimation uncertainty

of the ITR by averaging over the random sampling of training sets.

To generalize the PAPE (Eqn (2)), we first define the population proportion of units assigned

to the treatment condition under the estimated ITR as follows,

pF = E{Pr(f̂Ztr(Xi) = 1 | Xi)} = E{f̄F (Xi)}

where the expectation is taken with respect to the sampling of training data of size n−m and the

population distribution of Xi. Then, the PAPE of an estimated ITR is given by,

τF = E{λF − pFYi(1)− (1− pF )Yi(0)}, (A10)

where λF is the population average value of the estimated ITR defined in Eqn (A9).

A.5.1 The Population Average Value

We begin by considering the following cross-validation estimator of the population average value

for an estimated ITR (Eqn (A9)),

λ̂F =
1

K

K∑
k=1

λ̂f̂−k
(Zk). (A11)

The following theorem proves the unbiasedness of this estimator and derives its exact variance

expression under the Neyman’s repeated sampling framework.
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Theorem A4 (Unbiasedness and Exact Variance of the Cross-Validation Population
Average Value Estimator) Under Assumptions 1, 2, and 3, the expectation and variance of
the cross-validation Population Average Value estimator defined in Eqn (A11) are given by,

E(λ̂F ) = λF

V(λ̂F ) =
E(S2

f̂1
)

m1
+

E(S2
f̂0

)

m0
+ E

{
Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

}
− K − 1

K
E(S2

F )

for i 6= j where S2
f̂ t

=
∑m

i=1

(
Yf̂ i(t)− Yf̂ (t)

)2
/(m−1), S2

F =
∑K

k=1

{
λ̂f̂−k

(Zk)− λ̂f̂−k
(Zk)

}2
/(K−

1), and τi = Yi(1) − Yi(0) with Yf̂ i(t) = 1{f̂Ztr(Xi) = t}Yi(t), Yf̂ (t) =
∑m

i=1 Yf̂ i(t)/m, and

λ̂f̂−k
(Zk) =

∑K
k=1 λ̂f̂−k

(Zk)/K for t = {0, 1}.

The proof of unbiasedness is similar to that of Appendix A.1.2 and thus is omitted. To derive the

variance, we first introduce the following useful lemma, adapted from Nadeau and Bengio (2000).

Lemma 2

E(S2
F ) = V(λ̂f̂−k

(Zk))− Cov(λ̂f̂−k
(Zk), λ̂f̂−`

(Z`)),

V(λ̂F ) =
V(λ̂f̂−k

(Zk))
K

+
K − 1

K
Cov(λ̂f̂−k

(Zk), λ̂f̂−`
(Z`)).

where k 6= `.

The lemma implies,

V(λ̂F ) = V(λ̂f−k
(Zk))−

K − 1

K
E(S2

F ). (A12)

We then follow the same process of derivation as in Appendix A.1.2 while replacing Y ∗i (t) with

Yf̂ i(t) for t ∈ {0, 1}. The only difference lies in the covariance term, which can be expanded as

follows,

Cov(Yf̂ i(1)− Yf̂ i(0), Yf̂ j(1)− Yf̂ j(0)) = Cov(f̂Ztr(Xi)τi + Yi(0), f̂Ztr(Xj)τj + Yj(0))

= Cov(f̂Ztr(Xi)τi, f̂Ztr(Xj)τj)

= E
[
Cov(f̂Ztr(Xi)τi, f̂Ztr(Xj)τj | Xi,Xj , τi, τj)

]
= E

[
Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

]
.

So the full variance expression is:

V(λ̂F ) = V(λ̂f−k
(Zk))−

K − 1

K
E(S2

F )

=
E(S2

f̂1
)

m1
+

E(S2
f̂0

)

m0
+ E

[
Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

]
− K − 1

K
E(S2

F )

2

When compared to the case of a fixed ITR with the sample size of m (see Theorem A1 in

Appendix A.1.1), the variance has two additional terms. The covariance term accounts for the
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estimation uncertainty about the ITR, and is typically positive because two units, for which an

estimated ITR makes the same treatment assignment recommendation, are likely to have causal

effects with the same sign. The second term is due to the efficiency gain resulting from the K-fold

cross-validation rather than evaluating an estimated ITR once.

The cross-validation estimate of E(S2
f̂ t

) is straightforward and is given by,

Ê(S2
f̂ t

) =
1

K(mt − 1)

K∑
k=1

m∑
i=1

1{T (k)
i = t}

{
Y

(k)

f̂ i
(t)− Y (k)

f̂ t

}2

,

where Y
(k)

f̂ i
(t) = 1{f̂−k(X

(k)
i ) = t}Y (k)

i (t) and Y
(k)

f̂ t
=
∑m

i=1 1{T (k)
i = t}Y (k)

f̂ i
(t)/mt. In contrast,

the estimation of this cross-validation variance requires care. In particular, although it is tempting

to estimate E(S2
F ) using the realization of S2

F , this estimate is highly variable especially when K

is small. As a result, it often yields a negative overall variance estimate. We address this problem

by first noting that Lemma 2 implies,

V(λ̂f̂−k
(Zk)) =

E(S2
f̂1

)

m1
+

E(S2
f̂0

)

m0
+ E

{
Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

}
≥ E(S2

F ).

Then, this inequality suggests the following consistent estimator of E(S2
F ),

Ê(S2
F ) = min

(
S2
F ,

̂V(λ̂f̂−k
(Zk))

)
.

Although this yields a conservative estimate of V(λ̂F ) in finite samples, the bias appears to be

small in practice (see Section 5.2).

Finally, for the estimation of the covariance term, since f̂Ztr is binary, we have,

Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)

= Pr(f̂Ztr(Xi) = f̂Ztr(Xj) = 1 | Xi,Xj)− Pr(f̂Ztr(Xi) = 1 | Xi) Pr(f̂Ztr(Xj) = 1 | Xj),

for i 6= j. An unbiased cross-validation estimator of this covariance (given Xi and Xj) is,

̂Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj) =
1

K

K∑
k=1

f̂−k(Xi)f̂−k(Xj)−
1

K

K∑
k=1

f̂−k(Xi)
1

K

K∑
k=1

f̂−k(Xj).

Thus, we have the following cross-validation estimator of the required term,

̂
E
{

Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)Yi(s)Yj(t)
}

=

∑n
i=1

∑
j 6=i 1{Ti = s, Tj = t}YiYj · ̂Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)∑n

i=1

∑
j 6=i 1{Ti = s, Tj = t}

.

for s, t ∈ {0, 1}. However, since this naive calculation is computationally expensive, we rewrite it

as follows to reduce the computational time from O(n2K) to O(nK),∑K
k=1

(∑n
i=1 1{Ti = s}Yif̂−k(Xi)

)(∑n
i=1 1{Ti = t}Yif̂−k(Xi)

)
−
∑n

i=1 1{Ti = s, Ti = t}Y 2
i f̂−k(Xi)

K [(
∑n

i=1 1{Ti = s}) (
∑n

i=1 1{Ti = t})−
∑n

i=1 1{Ti = s, Ti = t}]
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−
(
∑n

i=1

∑K
k=1 1{Ti = s}Yif̂−k(Xi))(

∑n
i=1

∑K
k=1 1{Ti = t}Yif̂−k(Xi))

K2 [(
∑n

i=1 1{Ti = s})(
∑n

i=1 1{Ti = t})−
∑n

i=1 1{Ti = s, Ti = t}]

+

∑n
i=1

∑K
k=1 1{Ti = s, Ti = t}Y 2

i f̂−k(Xi)

K2 [(
∑n

i=1 1{Ti = s})(
∑n

i=1 1{Ti = t})−
∑n

i=1 1{Ti = s, Ti = t}]
.

A.5.2 The Population Average Prescriptive Effect (PAPE)

Next, we propose the following cross-validation estimator of the PAPE for an estimated ITR

(Eqn (A10)),

τ̂F =
1

K

K∑
k=1

τ̂f̂−k
(Zk) (A13)

where τ̂f (·) is defined in Eqn (A2). The next theorem shows the unbiasedness of this estimator

and derives its variance.

Theorem A5 (Unbiasedness and Exact Variance of the Cross-Validation PAPE Es-
timator) Under Assumptions 1, 2, and 3, the expectation and variance of the cross-validation
PAPE estimator defined in Eqn (A13) are given by,

E(τ̂F ) = τF

V(τ̂F ) =
m2

(m− 1)2

[
E(S̃2

f̂1
)

m1
+

E(S̃2
f̂0

)

m0
+

1

m2

{
τ2F −mpF (1− pF )τ2 + 2(m− 1)(2pF − 1)ττF

}
+

1

m2
E
{{

(m− 3)(m− 2)τ2 + (m2 − 2m+ 2)τiτj − 2(m− 2)2ττi
}

×Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)
}]
− K − 1

K
E(S̃2

F )

for i 6= j, where S̃2
f̂ t

=
∑m

i=1(Ỹf̂ i(t)− Ỹf̂ (t))2/(m− 1), S̃2
F =

∑K
k=1(τ̂f̂−k

(Zk)− τ̂f̂−k
(Zk))2/(K − 1)

with Ỹf̂ i(t) = (f̂−k(Xi) − p̂f̂−k
)Yi(t), Ỹf̂ (t) =

∑m
i=1 Ỹf̂ i(t)/m, and τ̂f̂−k

(Zk) =
∑K

k=1 τ̂f̂−k
(Zk)/K,

for t = {0, 1}.

Proof The proof of unbiasedness is similar to that of Appendix A.1.2 and thus is omitted. The

derivation of the variance is similar to that of Appendix A.5.1. The key difference is the calculation

of the following covariance term, which needs care due to the randomness of f̂Ztr ,

Cov(Y ∗i (1)− Y ∗i (0), Y ∗j (1)− Y ∗j (0))

= Cov


(
f̂Ztr(Xi)−

1

m

m∑
i′=1

f̂Ztr(Xi′)

)
τi,

f̂Ztr(Xj)−
1

m

m∑
j′=1

f̂Ztr(Xj′)

 τj

 ,

where i 6= j. There are seven terms that need to be carefully expanded,

m− 2

m2
Cov(f̂Ztr(Xk)τi, f̂Ztr(Xk)τj) +

(m− 2)(m− 3)

m2
Cov(f̂Ztr(Xk)τi, f̂Ztr(X`)τj)

+
(m− 1)2

m2
Cov(f̂Ztr(Xi)τi, f̂Ztr(Xj)τj) +

1

m2
Cov(f̂Ztr(Xj)τi, f̂Ztr(Xi)τj)
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− 2(m− 1)

m2
Cov(f̂Ztr(Xi)τi, f̂Ztr(Xi)τj) +

2(m− 2)

m2
Cov(f̂Ztr(Xj)τi, f̂Ztr(Xk)τj)

− 2(m− 2)(m− 1)

m2
Cov(f̂Ztr(Xi)τi, f̂Ztr(Xk)τj),

where i, j, k, ` represent indices that do not take an identical value at the same time (e.g., i 6= j).

Then, we rewrite the above terms using the properties of covariance as follows,

(m− 2)τ2

m2
V(f̂Ztr(Xi)) +

(m− 2)(m− 3)τ2

m2
Cov(f̂Ztr(Xi), f̂Ztr(Xj))

+
(m− 1)2

m2

[
E
{

Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

}
+ Cov(f̄F (Xi)τi, f̄F (Xj)τj)

]
+

1

m2

[
E
{

Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

}
+ Cov(f̄F (Xj)τi, f̄F (Xi)τj)

]
− 2(m− 1)τ

m2
(1− pF )E(f̂Ztr(Xi)τi)

+
2(m− 2)τ

m2

[
E
{

Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τi] + pF Cov(f̄F (Xi), τi)
}]

− 2(m− 2)(m− 1)τ

m2

[
E
{

Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τi

}
+ Cov(f̄F (Xi)τi, f̄F (Xj))

]
=

(m− 2)τ2

m2
pF (1− pF ) +

(m− 2)(m− 3)τ2

m2
Cov(f̂Ztr(Xi), f̂Ztr(Xj))

+
m2 − 2m+ 2

m2
E
{

Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

}
+

1

m2
(τ2F + 2τpF τF )

− 2(m− 1)τ2

m2
pF (1− pF )− 2(m− 1)ττF

m2
(1− pF ) +

2(m− 2)τ

m2
pF τF

− 2(m− 2)2τ

m2
E
{

Cov(f̂Ztr(Xi), f̂Ztr(Xk) | Xi,Xj)τi

}
=

1

m2

(
τ2F −mpF (1− pF )τ2 + 2(m− 1)(2pF − 1)ττF

)
+ E

[
(m− 2)(m− 3)τ2

m2
Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)

− 2(m− 2)2τ

m2
Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τi.

+
m2 − 2m+ 2

m2
Cov(f̂Ztr(Xi), f̂Ztr(Xj) | Xi,Xj)τiτj

]
,

for i 6= j, where we used the results from Appendix A.1.2 as well as V(f̂Ztr(Xi)) = pF (1− pF ) and

τF = Cov(f̄F (Xi), τi) = Cov(f̂Ztr(Xi), τi). 2

Like the case of the population average value, the variance has two extra terms when compared

to the case of a fixed ITR (see Theorem A2 in Appendix A.1.2). The estimation of the variance is

similar to that for the population average value.

A.6 Proof of Theorem 3

We begin by deriving the variance. The derivation proceeds in the same fashion as the one for

Theorem A5 (see Appendix A.5.2). The only non-trivial change is the derivation of the covariance

term, which we detail below. First, similar to the proof of Theorem 1 (see Appendix A.2), we note
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the following relation:

Pr(f̂Ztr(Xi, ĉp) = 1) = E
(∫ ∞
−∞

Pr(f̂Ztr(Xi, c) = 1 | Ztr, ĉp = c)P (ĉp = c | Ztr)dc
)

= E
(∫ ∞
−∞

bmpc
m

P (ĉp = c | Ztr)dc
)

=
bmpc
m

,

where the second equality follows from the fact that conditioned on a fixed training set Ztr and

conditioned on ĉp = c, exactly bmpc out of m units will be assigned to the treatment condition.

Given this result, we can compute the covariance as follows,

Cov(Ỹi(1)− Ỹi(0), Ỹj(1)− Ỹj(0))

= Cov
{(
f̂Ztr(Xi, ĉp)− p

)
τi,
(
f̂Ztr(Xj , ĉp)− p

)
τj

}
= Cov

(
f̂Ztr(Xi, ĉp)τi, f̂Ztr(Xj , ĉp)τj

)
− 2pCov

(
τi, f̂Ztr(Xj , ĉp)τj

)
=

mbmpc(bmpc − 1)− bmpc2(m− 1)

m2(m− 1)
E(τi | f̂Ztr(Xi, ĉp) = 1)2 − 2pCov

(
τi, f̂Ztr(Xj , ĉp)τj

)
=
bmpc(bmpc −m)

m2(m− 1)
κF1(p)

2 +
2pbmpc(m− bmpc)

m2(m− 1)

(
κF1(p)

2 − κF1(p)κF0(p)
)

= (2p− 1)
bmpc(m− bmpc)

m2(m− 1)
κF1(p)

2 − 2pbmpc(m− bmpc)
m2(m− 1)

κF1(p)κF0(p)

=
bmpc(m− bmpc)

m2(m− 1)

{
(2p− 1)κF1(p)

2 − 2pκ1(p)κF0(p)
}

Combining this covariance result with the expression for the marginal variances yields the desired

variance expression for τ̂Fp.

Next, we derive the upper bound of bias. Using the same technique as the proof of Theorem A2,

we can rewrite the expectation of the proposed estimator as,

E(τ̂Fp) = E

[
1

n

n∑
i=1

{
Yi

(
f̂Ztr(Xi, ĉp)

)
− pYi(1)− (1− p)Yi(0)

}]

Now, define F (c) = P(s(Xi) ≤ c). Without loss of generality, assume ĉp > cp (If this is not the

case, we simply switch the upper and lower limits of the integrals below). Then, the bias of the

estimator is given by,

|E(τ̂Fp)− τFp| =
∣∣E{E(τ̂Fp − τFp | Ztr)

}∣∣
≤ E

{∣∣E(τ̂Fp − τFp | Ztr)
∣∣}

= E

{∣∣∣∣∣E
[

1

n

n∑
i=1

{
Yi

(
f̂Ztr(Xi, ĉp)

)
− Yi

(
f̂Ztr(Xi, cp)

)} ∣∣∣∣ Ztr
]∣∣∣∣∣
}

= E

{∣∣∣∣∣E
[∫ ĉp

cp

E(τi | ŝZtr(Xi) = c,Ztr)dF (c)

]∣∣∣∣∣
}
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= E

{∣∣∣∣∣E
[∫ F (ĉp)

F (cp)
E(τi | ŝZtr(Xi) = F−1(x),Ztr)dx

]∣∣∣∣∣
}

≤ E
[
|F (ĉp)− 1− p| × max

c∈[cp,ĉp]

∣∣E(τi | ŝZtr(Xi) = c,Ztr)
∣∣] .

By the definition of ĉp, F (ĉp) is the m− bmpcth order statistic of n independent uniform random

variables. This statistic does not depend on the training set Ztr as the test samples are independent.

Thus, F (ĉp) follows the Beta distribution with the shape and scale parameters equal to m− bmpc
and bmpc+ 1, respectively. Therefore, we have,

P(|F (ĉp)−p| > ε) = 1−B(1−p+ε,m−bmpc, bmpc+1)+B(1−p−ε,m−bmpc, bmpc+1), (A14)

where B(ε, α, β) is the incomplete beta function, i.e.,

B(ε, α, β) =

∫ ε

0
tα−1(1− t)β−1dt.

Combining with the result above, the desired result follows. 2

A.7 The Population Average Prescriptive Difference of Estimated ITRs under

a Budget Constraint

We consider the estimation and inference for the PAPD of an estimated ITR. The cross-validation

estimator of this quantity is given by,

∆̂p(F,G) =
1

K

K∑
k=1

∆̂p(f̂−k, ĝ−k,Zk), (A15)

where ∆̂p(f̂−k, ĝ−k,Zk) is defined in Eqn (8). For completeness, we present the algorithm for

estimating the PAPD under this setting below.

Algorithm A1 Comparing Two Individualized Treatment Rules (ITR) using the Same Experi-
mental Data via Cross-Validation

Input: Data Z = {Xi, Ti, Yi}ni=1, Machine learning algorithms F and G, Evaluation metric
τf,g, Number of folds K

Output: Estimated evaluation metric τ̂FG, Estiamted variance of τ̂FG)

1: Split data into K random subsets of equal size (Z1, · · · ,Zk)
2: k ← 1
3: while k ≤ K do
4: Z−k = [Z1, · · · ,Zk−1,Zk+1, · · · ,ZK ]
5: f̂−k = F (Z−k) . Estimate ITR f by applying F to Z−k
6: ĝ−k = G(Z−k) . Estimate ITR g by applying G to Z−k
7: τ̂k = τ̂f̂−k,ĝ−k

(Zk) . Evaluate estimated ITR f̂ using Zk
8: k ← k + 1
9: end while

10: return τ̂FG = 1
K

∑K
k=1 τ̂k, V̂(τ̂FG) = w(f̂−1, · · · , f̂−k, ĝ−1, · · · , ĝ−k,Z1, · · · ,ZK)

Although the bias of the proposed estimator is not zero, we derive its upper bound as done in

Theorem 3.
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Theorem A6 (Bias and Variance of the Cross-validation PAPD Estimator with a
Budget Constraint) Under Assumptions 1, 2, and 3, the bias of the cross-validation PAPD
estimator with a budget constraint p defined in Eqn (A15) can be bounded as follows,

EZtr [Pcp(f̂Ztr ),cp(ĝZtr )
(|E{∆̂p(F,G)−∆p(F,G) | cp(f̂Ztr), cp(ĝZtr)}| ≥ ε)]

≤ 1− 2B(1− p+ γp(ε), n− bnpc, bnpc+ 1) + 2B(1− p− γp(ε), n− bnpc, bnpc+ 1),

where any given constant ε > 0, B(ε, α, β) is the incomplete beta function (if α = 0 and β > 0, we
set B(ε, α, β) := H(ε) for all ε where H(ε) is the Heaviside step function), and

γp(ε) =
ε

EZtr [maxc∈[cp(f̂Ztr )−ε,cp(f̂Ztr )+ε],d∈[cp(ĝZtr )−ε,cg(ĝZtr )+ε]
{E(τi | ŝf̂Ztr

(Xi) = c),E(τi | ŝĝZtr (Xi) = d)}]
.

The variance of the estimator is,

V(∆̂p(F,G)) =
E(S2

f̂ ĝ1
)

n1
+

E(S2
f̂ ĝ0

)

n0
+
bnpc(bnpc − n)

n2(n− 1)
(κF1(p)

2 + κG1(p)
2)

−2

(
Pr(f̂Ztr(Xi, ĉp(f̂Ztr)) = ĝZtr(Xi, ĉp(f̂Ztr)) = 1)− bnpc

2

n2

)
κF1(p)κG1(p)

−K − 1

K
E(S2

FG),

where S2
f̂ ĝt

=
∑n

i=1(Ỹf̂ ĝi(t)−Ỹf̂ ĝ(t))
2/(n−1), S2

FG =
∑K

k=1(∆̂p(f̂−k, ĝ−k,Zk))−∆̂p(f̂−k, ĝ−k,Zk))2/(K−
1), κFt(p) = E(τi | f̂Ztr(Xi, ĉp(f̂Ztr)) = t), and κGt(p) = E(τi | ĝZtr(Xi, ĉp(g)) = t) with Yf̂ ĝi(t) ={
f̂Ztr(Xi, ĉp(f̂Ztr))− ĝZtr(Xi, ĉp(ĝZtr))

}
Yi(t), Y (t) =

∑n
i=1 Yf̂ ĝi(t)/n, and ∆̂p(f̂−k, ĝ−k,Zk) =∑K

k=1 ∆̂p(f̂−k, ĝ−k,Zk)/K for t = 0, 1.

Proof is similar to that of Theorem 3, and hence is omitted. To estimate the variance, it is tempting

to replace all unknowns with their sample analogues. However, the empirical analogue for the joint

probability Pr(f̂Ztr(Xi, ĉp(f̂Ztr)) = ĝZtr(Xi, ĉp(ĝZtr)) = 1) under general f̂Ztr , ĝZtr is not a good

estimate because it is solely based on one realization. Thus, we use the following conservative

bound,

−
(

Pr(f̂Ztr(Xi, ĉp(f̂Ztr)) = ĝZtr(Xi, ĉp(f̂Ztr)) = 1)− bnpc
2

n2

)
κF1(p)κG1(p)

≤ bnpcmax{bnpc, n− bnpc}
n2(n− 1)

|κF1(p)κG1(p)|,

where the inequality follows because the maximum is achieved when the scoring rules of f̂Ztr and

ĝZtr are perfectly negatively correlated. We use this upper bound in our simulation and empirical

studies. In Section 5, we find that this upper bound estimate of the variance produces only a small

conservative bias.

A.8 An Additional Empirical Application

In this section, we describe an additional empirical application based on the canvassing experiment

(Broockman and Kalla, 2016). This study was also re-analyzed by Künzel et al. (2018). The

original authors find little heterogeneity in treatment effect. Our analysis below confirms this

finding.
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BCF Causal Forest R-Learner
est. s.e. treated est. s.e. treated est. s.e. treated

No budget constraint −0.104 0.128 48.4% −0.349 0.137 47.5% 0 0 100%
20% Budget constraint −0.02 0.121 20% −0.120 0.107 20% 0 0.104 20%

Table A2: The Estimated Population Average Prescription Effect (PAPE) for Bayesian Causal
Forest (BCF), Causal Forest, and R-Learner with and without a Budget Constraint. For each of
the three outcomes, the point estimate, the standard error, and the proportion treated are shown.
The budget constraint considered here implies that the maximum proportion treated is 20%.

A.8.1 The Experiment and Setup

We analyze the transgender canvas study of Broockman and Kalla (2016). This is an experiment

that randomly assigned a door-to-door canvassing treatment to over 1,200 households (with a total

of over 1,800 members) in Florida to estimate the treatment effect on support for a transgender

rights law. The placebo group received a conversation on recycling, while the treatment group

received a conversation about transgender issues. The support is measured at various time points

after the intervention (i.e., 3 days, 3 weeks, 6 weeks, 3 months) using an online survey. The

treatment effect heterogeneity is important in this scenario as canvassing is both costly and time-

consuming. An ITR may allow canvassers to contact only those who are positively influenced by

the message.

We follow the pre-experiment analysis plan by the original authors, and select a total of 26

baseline covariates including political inclination, gender, race, and opinions on social issues. Our

treatment variable is whether or not the individual received the conversation about transgender

issues (as opposed to the recycling message). Since the randomization was conducted on the

household level, we randomly select one individual from each household for our analysis. We

focus on the primary target (support for the transgender law) at the 3 day time point after the

intervention, which is measured on a discrete scale with 7 possible values {−3,−2,−1, 0, 1, 2, 3},
with positive values indicating support.

The resulting dataset consists of 409 observations. We randomly select approximately 70%

of the sample (i.e., 287 observations) as the training data and the reminder of the sample (i.e.,

122 observations) as the evaluation data. We center the outcome variable using the mean in the

training data to minimize variance, as discussed in Section 2. We train three machine learning

models designed to measure heterogeneous treatment effects: Causal Forests, Bayesian Causal

Forests (Hahn et al., 2020), and R-Learner (Nie and Wager, 2017). All tuning was done through

the 5-fold cross validation procedure on the training set using the PAPE as the evaluation metric.

For Causal Forest, we set tune.parameters = TRUE. For Bayesian Causal Forests (BCF), tuning

was done using a burn-in sample for MCMC sampling. For R-Learner, we utilized the lasso loss

function and the default cross-validation for the regularization parameter. We then create an ITR

as 1{τ̂(x) > 0} where τ̂(x) is the estimated conditional average treatment effect obtained from

each fitted model. We will evaluate these ITRs using the evaluation sample.
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Figure A1: Estimated Area Under the Prescriptive Effect Curve (AUPEC). A solid red line in each
plot represents the Population Average Prescriptive Effect (PAPE) with pointwise 95% confidence
intervals shaded. The area between this line and the black line (representing random treatment)
is the AUPEC. The results are presented for the individualized treatment rules based on Bayesian
Causal Forest (BCF), Causal Forest, and R-Learner.

A.8.2 Results

Table A2 presents the results. We find that without a budget constraint, none of the ITRs based

on the machine learning methods significantly improves upon the random treatment rule. In

particular, the R-Learner leads to an ITR that treats everyone. Furthermore, we see that the

ITR based on Causal Forest performs worse than the random treatment rule by 0.349 (out of a

−3 to 3 scale) with a standard error of 0.137. The results are similar when we impose a budget

constraint, and none of the resulting ITRs perform statistically significantly better than the random

treatment rule. The result based on R-Learner is consistent with the conclusion of the original

study indicating that there was no heterogeneity detected using LASSO.

We plot the estimated PAPE (with 95% pointwise confidence interval) as a function of budget

constraint in Figure A1. The area between this line and the black horizontal line at zero corresponds

to the AUPEC. In each plot, the horizontal axis represents the budget constraint as the maximum

proportion treated, and the point estimate and standard error of the AUPEC are shown. While

BCF and R-Learner fail to create an ITR that is significantly different from the random treatment

rule, Causal Forest produces an ITR that is statistically significantly worse than the random

treatment rule. The result illustrates a potential danger of using an advanced machine learning

algorithm to create an ITR. Indeed, there is no guarantee that the resulting ITR outperforms the

random treatment rule.
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