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1 The EM Algorithm for the ML Estimator of Section 2.3
In this appendix, we derive the EM algorithm for the ML estimator under the design with multiple sensitive
items. Under this design, the observed-data likelihood function can be written as,

L(δ, φ;Y, T,X)

=
J∏
y=0

∏
i∈J (0,y)

h(y;Xi, φ)
K∏
t=1

 ∏
i∈J (t,0)

h(0;Xi, φ)(1− gt(Xi, 0, δt0))
∏

i∈J (t,J+1)

h(J ;Xi, φ)gt(Xi, J, δtJ)

×
J∏
y=1

∏
i∈J (t,y)

{gt(Xi, y − 1, δt,y−1)h(y − 1;Xi, φ) + (1− gt(Xi, y, δty))h(y;Xi, φ)}

 , (1)

where J (t, y) = {i : Ti = t, Yi = y} represents the set of respondents with Ti = t and Yi = y.
However, this likelihood function is difficult to maximize because it consists of many mixture compo-

nents. Thus, following Imai (2011), we develop an EM algorithm by treating Z∗i,J+t as partially missing
data for each t = 1, . . . ,K. This leads to the following complete-data likelihood function,

Lcom(δ, φ;Y, T,X, {Z∗J+t}Kt=1)

=

N∏
i=1

[
h(Yi;Xi, ψ)1{Ti=0}

K∏
t=1

{
(gt(Xi, Yi − 1, δtYi)h(Yi − 1;Xi, ψ))Z

∗
i,J+t

× (1− gt(Xi, Yi, δtYi))h(Yi;Xi, ψ))1−Z∗i,J+t

}1{Ti=t}
]

(2)

Given this complete-data likelihood function, the E-step of the EM algorithm is derived by computing the
conditional expectation of the missing data as follows,

E(Z∗i,J+t | Yi = y, Ti = t,Xi = x)

=
Pr(Z∗i,J+t = 1, Yi = y | Ti = t,Xi = x)

Pr(Yi = y | Ti = t,Xi = x)
(3)

=


0 if y = 0

1 if y = J + 1
gt(x,y−1,δt,y−1)h(y−1;x,ψ)

gt(x,y−1,δt,y−1)h(y−1;x,ψ)+(1−gt(x,y,δty))h(y;x,ψ) otherwise

(4)
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where the first equality follows from Bayes’ rule.
Given this E-step, the M-step can be conducted by maximizing the conditional expectation of the

complete-data log-likelihood function (based upon equation (27) given the observed data (Yi, Xi, Ti) and
the current values of the parameters). As in the case of the ML estimator under the standard design (Imai,
2011), this M-step reduces to the separate fitting of each model, i.e., h(y;x, ψ) and gt(x, y, δyt), based
on their corresponding weighted log-likelihood functions, which can be easily accomplished in standard
statistical software.

2 The Asymptotic Distribution of the Two-step NLS Estimator of Section
2.4

In this appendix, we derive the asymptotic distribution of the nonlinear least squares estimator proposed
in Section 2.4, assuming that πj(Xi; θj) is the logistic function, i.e., πj(Xi; θj) = exp(X>i βj)/{1 +

exp(X>i βj). We follow the standard analytical strategy outlined in Newey and McFadden (1994, Section
6) and treat the proposed two-step estimator as a method of moments estimator. In particular, the proposed
estimator solves the following first order conditions with probability approaching one as the sample size
tends to infinity,

1

N

∑
i=1

Ti

Yi − J+1∑
j=1

exp(X>i βj)

1 + exp(X>i βj)

 exp(X>i βJ+1)

{1 + exp(X>i βJ+1)}2
Xi︸ ︷︷ ︸

g(Yi,Ti,Xi,Θ)

= 0 (5)

1

N

∑
i=0

(1− Ti)
(
Zi1 −

exp(X>i β1)

1 + exp(X>i β1)

)
exp(X>i β1)

{1 + exp(X>i β1)}2
Xi︸ ︷︷ ︸

h(Zi1,Ti,Xi,θ1)

= 0 (6)

...
1

N

∑
i=0

(1− Ti)
(
ZiJ −

exp(X>i βJ)

1 + exp(X>i βJ)

)
exp(X>i βJ)

{1 + exp(X>i βJ)}2
Xi︸ ︷︷ ︸

h(ZiJ ,Ti,Xi,θJ )

= 0 (7)

Under the standard regularity conditions (Hansen 1982), the two-step estimator is consistent given that
πj(Xi; θj) can be consistently estimated for each control item j = 1, . . . , J using just the control group.

To derive the asymptotic variance, we utilize the sandwich robust variance formula to account for the
possible correlation across control items in the control group. The asymptotic distribution is given by,

√
n


θ̂J+1 − θJ+1

θ̂1 − θ1

...
θ̂J − θJ

 D−→ N (0, V ) where V = G−1FG−1. (8)

The expressions for F and G are given below,

F =


E(g(Yi, Ti, Xi,Θ)g(Yi, Ti, Xi,Θ)>) 0 · · · 0

0 E(h(Zi1, Ti, Xi, θ1)h(Zi1, Ti, Xi, θ1)>) · · · E(h(Zi1, Ti, Xi, θ1)h(ZiJ , Ti, Xi, θJ )>)

...
...

. . .
...

0 E(h(ZiJ , Ti, Xi, θJ )h(Zi1, Ti, Xi, θ1)>) · · · E(h(ZiJ , Ti, Xi, θJ )h(ZiJ , Ti, Xi, θJ )>)


(9)

and

G−1 =

[
H L

0 M

]−1

=

[
H−1 −H−1LM−1

0 M−1

]
(10)
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where the submatrices of G are given by,

H = E

(
∂g(Yi, Ti, Xi,Θ)

∂β>J+1

)
= −E

(
Ti exp(2X>i βJ+1)

{1 + exp(X>i βJ+1)}4
XiX

>
i

)
(11)

Lj = E

(
∂g(Yi, Ti, Xi,Θ)

∂β>j

)
= −E

(
Ti exp{X>i (βj + βJ+1)}

{1 + exp(X>i βj)}2{1 + exp(X>i βJ+1)}2
XiX

>
i

)
(12)

Mjj′ = E

(
∂h(Zij , Ti, Xi, θj)

∂β>j′

)
=

{
−E

(
(1−Ti) exp(2X>i βj)

{1+exp(X>i βj)}4 XiX
>
i

)
if j = j′

0 otherwise
(13)

where L = [L1L2 . . . LJ ] and Mjj′ is the (j, j′)th block submatrix of M .
When the first step is replaced with the maximum likelihood estimation of the logistic regression model,

the h(Zij , Ti, Xi, θj) function needs to be redefined as,

(1− Ti)
(
Zij −

exp(X>i βj)

1 + exp(X>i βj)

)
Xi, (14)

for j = 1, . . . , J , while the rest of the formulae remains the same.

3 The EM Algorithm of the ML Estimator in Section 3.2
Under the setup described in Section 3.2, the likelihood function under the standard assumption given in
Imai (2011) can be modified to,

L(φ, ψ, κ, δ;Y, T,X)

=
J∏
y=0

∏
i∈J (0,y)

h(y;Xi, ψ)
∏

i∈J (1,0)

{(1− g(Xi, δ)) + g(Xi, δ)q(Xi, κ)}h(0;Xi, ψ)

×
∏

i∈J (1,1)

{
g(Xi, δ)(1− q(Xi, κ))h(0;Xi, ψ) + (1− g(Xi, δ))h(1;Xi, ψ)

}
×

J−1∏
y=2

∏
i∈J (1,y)

{g(Xi, δ)h(y − 1;Xi, ψ) + (1− g(Xi, δ))h(y;Xi, ψ)}

×
∏

i∈J (1,J)

[g(Xi, δ){h(J − 1;Xi, ψ) + q̄(Xi, φ)h(J ;Xi, ψ)}+ (1− g(Xi, δ))h(J ;Xi, ψ)]

×
∏

i∈J (1,J+1)

(1− q̄(Xi, φ))g(Xi, δ)h(J ;Xi, ψ), (15)

where J (t, y) represents a set of respondents with (Ti, Yi) = (t, y). The form of this likelihood function
shows that each subset of respondents in the treatment group is a mixture of different respondent types.

To maximize this complex likelihood function, we again adopt the EM algorithm by considering (Z∗i,J+1, Zi,J+1(1))

for the respondents in the treatment group as (partially) missing data. First, the complete-data likelihood
function can be written as,

Lcom(φ, ψ, κ, δ;Z∗J+1, ZJ+1(1), Y, T,X)

=

N∏
i=1

h(Yi;Xi, ψ)1−Ti {h(Yi;Xi, ψ)(1− g(Xi, δ))}Ti(1−Z
∗
i,J+1)

×
[
g(Xi, δ)h(Yi − 1;Xi, ψ)Zi,J+1(1)h(Yi;Xi, ψ)1−Zi,J+1(1)q̄(Xi, φ)(1−Zi,J+1(1))1{Yi=J}

(1− q̄(Xi, φ))Zi,J+1(1)1{Yi=J+1}q(Xi, κ)(1−Zi,J+1(1))1{Yi=0}(1− q(Xi, κ))Zi,J+1(1)1{Yi=1}
]TiZ∗i,J+1

(16)
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Then, the E-step of the EM algorithm requires the calculation of the following conditional expectations,

E(Z∗i,J+1 | Yi = y, Ti = 1, Xi = x) =



h(0;x,ψ)g(x,δ)q(x,κ)

h(0;x,ψ){g(x,δ)q(x,κ)+(1−g(x,δ))} if y = 0
h(0;x,ψ)g(x,δ)(1−q(x,κ))

h(0;x,ψ)g(x,δ)(1−q(x,κ))+h(1;x,ψ)(1−g(x,δ)) if y = 1
g(x,δ){h(J−1;x,ψ)+q̄(x,φ)h(J ;x,ψ)}

g(x,δ){h(J−1;x,ψ)+q̄(x,φ)h(J ;x,ψ)}+(1−g(x,δ))h(J ;x,ψ) if y = J

1 if y = J + 1
g(x,δ)h(y−1;x,ψ)

g(x,δ)h(y−1;x,ψ)+(1−g(x,δ))h(y;x,ψ) otherwise

(17)

E(Z∗i,J+1Zi,J+1(1) | Yi = y, Ti = 1, X = x) =


0 if y = 0

g(x,δ)h(J−1;x,ψ)
g(x,δ){h(J−1;x,ψ)+q̄(x,φ)h(J ;x,ψ)}+(1−g(x,δ))h(J ;x,ψ) if y = J

E(Z∗i,J+1 | Y = y, T = 1, X = x) otherwise

(18)

The M-step of the EM algorithm consists of the separate fitting of each component of the model, i.e.,
g(x, δ), h(y;x, ψ), q̄(x, φ), and q(x, κ), based on the weighted log-likelihood function, for which the ap-
propriate weights are calculated at each iteration based on the above conditional expectations.
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