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Summary. We attempt to clarify, and suggest how to avoid, several serious misunderstandings
about and fallacies of causal inference. These issues concern some of the most fundamental
advantages and disadvantages of each basic research design. Problems include improper use
of hypothesis tests for covariate balance between the treated and control groups, and the conse-
quences of using randomization, blocking before randomization and matching after assignment
of treatment to achieve covariate balance. Applied researchers in a wide range of scientific disci-
plines seem to fall prey to one or more of these fallacies and as a result make suboptimal design
or analysis choices. To clarify these points, we derive a new four-part decomposition of the key
estimation errors in making causal inferences. We then show how this decomposition can help
scholars from different experimental and observational research traditions to understand better
each other’s inferential problems and attempted solutions.

Keywords: Average treatment effects; Blocking; Covariate balance; Matching; Observational
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1. Introduction

Random treatment assignment, blocking before assignment, matching after data collection and
random selection of observations are among the most important components of research designs
for estimating causal effects. Yet the benefits of these design features seem to be regularly mis-
understood by those specializing in different inferential approaches. Observationalists often
have inflated expectations of what experiments can accomplish; experimentalists ignore some
of the tools that observationalists have made available; and both regularly make related mistakes
in understanding and evaluating covariate balance in their data. We attempt to clarify some of
these issues by introducing a general framework for understanding causal inference.

As an example of some of the confusion in the literature, in numerous references across
a diverse variety of academic fields, researchers have evaluated the similarity of their treated
and control groups that is achieved through blocking or matching by conducting hypothesis
tests, most commonly the z-test for the mean difference of each of the covariates in the two

Address for correspondence: Kosuke Imai, Department of Politics, Princeton University, Princeton, NJ 08544,
USA.
E-mail: KiImai@Princeton.Edu

© 2008 Royal Statistical Society 0964-1998/08/171481



482 K. Imai, G. King and E. A. Stuart

groups. We demonstrate that when these tests are used as stopping rules in evaluating match-
ing adjustments, as frequently done in practice, they will often yield misleading inferences.
Relatedly, in experiments, many researchers conduct such balance tests after randomization to
see whether additional adjustments need to be made, perhaps via regression methods or other
parametric techniques. We show that this procedure is also fallacious, although for different
reasons.

These and other common fallacies appear to stem from a basic misunderstanding that some
researchers have about the precise statistical advantages of their research designs, and other par-
adigmatic designs with which they compare their work. We attempt to ameliorate this situation
here.

To illustrate our points, we use two studies comparing the 5-year survival of women with
breast cancer who receive breast conservation (roughly, lumpectomy plus radiation) versus
mastectomy. By the 1990s, multiple randomized studies indicated similar survival rates for the
two treatments. One of these was Lichter ez al. (1992), a study by the National Institutes of
Health which randomized 237 women to mastectomy or breast conservation, within blocking
strata defined by age, clinical node status and the presence or absence of cardiac disease. To
study whether this result generalized to women more broadly, the US Government Accounting
Office used observational data from women being treated in general medical practices across
the USA (US General Accounting Office, 1994; Rubin, 1997). The data came from the National
Cancer Institute’s ‘Surveillance, epidemiology, and end results’ database, with information on
5000 cancer patients, which includes nearly all women who were diagnosed with breast cancer
in five states and four metropolitan areas. We illustrate our results by examining the design
of these studies, rather than their findings, but note that the General Accounting Office study
did find that the results from the randomized trials also held in the broader population. How-
ever, our results apply to all key designs for making causal inferences and not only to these
studies.

2. Quantities of interest

Consider an observed sample of # units taken from a finite population of N units, where typ-
ically N > n. Stochastic processes that may not be fully observed or known generate variables
representing the sample selection /; and treatment assignment 7; mechanisms. As a result of
these mechanisms, unit i is in our sample if /; =1 and not if 7; = 0; unit i received the treatment
if T; =1 and not if 7; =0. Without loss of generality, assume that the treated and control groups
in the sample are each of size /2 so that n is an even number. For each unit, two potential out-
come variables exist, ¥;(1) and Y;(0), which represent the fixed values of the outcome variable
when T; is 1 or 0 respectively. In the sample, the potential outcome variable that corresponds to
the actual value of the treatment variable is observed, whereas the other is not observed, and
so we write the observed outcome as Y; =T; Y;(1) + (1 — T;) Y;(0) for units with 7; =1. In our
framework, therefore, (I;, T;, Y;) are random variables.
We define the (unobserved) treatment effect for unit i as

TE; =Y;(1) - ¥;(0). ()

The quantity TE; may vary across units as a function of the observed X; and unobserved U;
pretreatment characteristics of unit i. We observe the covariates X; but not U; in the sample,
and possibly neither in the remainder of the population. In practice, researchers often do not
attempt to estimate TE; for each 7, and instead they estimate only its average over either the
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sample, producing the sample average treatment effect SATE,

1
SATE=- Y. TE,
nie{r=1}

or over the population, producing the population average treatment effect PATE (Imbens, 2004),

1 N
PATE=— S TE,.

i=1
In the breast cancer studies, SATE is the effect of mastectomy versus breast can&er for the
women in a particular study. PATE, which is the quantity of real interest for women who are
subsequently diagnosed with breast cancer, is the effect of breast conservation versus mastec-
tomy among a larger population, e.g. all women who are diagnosed with breast cancer for whom

either treatment would be an appropriate therapy.

3. A decomposition of causal effect estimation error

A simple baseline estimator of either SATE or PATE is the difference in the sample means of
the observed outcome variable between the treated and control groups:
1 1
D=—— > Y;

Y.
n/2 ie{l;=1,T;=1}

n/2 ie{l;=1,T;=0}
Then, the difference between PATE and this estimator, which we call estimation error, is
A=PATE — D. 2)

By studying estimation error, we focus on the most basic goal of statistical inference—the
deviation of an estimate from the truth—rather than all of the various commonly used approx-
imations to this goal, such as unbiasedness, consistency, efficiency, asymptotic distribution,
admissibility and mean-square error. These statistical criteria can each be computed from our
results (by taking expectations, limits, variances, etc.), but all are secondary to understanding
and ultimately trying to reduce estimation error in a particular study.

We simplify the decomposition of estimation error by considering an additive model that
rules out interactions between the observed X and unobserved U covariates:

Yi()=g:/(X;) +h(Up), 3

with unknown functions g; and A, for t =0, 1. Then, the key result is that estimation error A
can be decomposed into additive terms

A=Ag+Ar=Ag, +Ag, + A1, + A7y, 4

where Ag=PATE — SATE and At =SATE — D represent sample selection and treatment imbal-
ance respectively (see Heckman et al. (1998) and King and Zeng (2006)). In the second line of
equation (4), we further decompose sample selection error Ag into two components, Ag,, and
Asg,,, due to selection on observed (X)) and unobserved (U) covariates respectively. Treatment
imbalance At similarly decomposes into components A1, and At, due to imbalance with
respect to these observed and unobserved covariates.

We now derive and interpret each of the components under the additive model of equation (3).
To focus on the key issues in this paper, our decomposition assumes away other forms of estima-
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tion error that often need to be attended to in actual empirical analysis, such as post-treatment
bias, measurement error, simultaneity, lack of compliance with the treatment assignment and
missing data, among others.

3.1. Sample selection
The first component, sample selection error, is given by

Ag=PATE — SATE = ? (NATE — SATE),

where NATE is the non-sample average treatment effect and is defined by applying the SATE
formula to the observations in the population but not in the sample, i.e.

TE;
NATE= Y L.
ie{t=0y N—n

Thus, the sample selection error component of causal estimation error vanishes if one of three
conditions holds:

(a) the sample is a census of the entire population, so that 7; =1 for all observations and thus
n=N;

(b) the treatment effect in the sample is the same as in the rest of the population, SATE =
NATE;

(c) we redefine the problem so that the population of interest is coincident with the sample,
in which case SATE and PATE are equivalent.

A special case of no sample selection error occurs when TE; is constant over i, in which case
SATE =NATE. In the presence of heterogeneous treatment effects, random sampling guaran-
tees no sample selection bias rather than no sample selection error, i.e. E(Ag)=0.

From the definition of TE; in equation (1), under the additive model of equation (3) and after
a little algebra, the sample selection error Ag as defined above can be decomposed into the two
additive components relating to observed and unobserved covariates:

N — 1 1
Ag, = 2 > XD —go(XD}—— > {a(X)—go(Xi)}|,
N |[N=n1Zoy nie(l=1}
N — 1 1
A== |5 X XD —h(XD} =~ ¥ {m(X)—ho(XD}.
1 ie{1,=0} nie{r=1}

Alternatively, these components can be expressed in the form
N—n - -
Agy = N /{gl(X) —g0(X)} H{F(X|I=0)— F(X|I=1)}, (5)

N—n
v N
where F represents the empirical (possibly multivariate) cumulative distribution function. Since,
by equation (3), the potential outcomes are deterministic functions of X and U, the treatment
effect in the sample is the same as in the population when the distributions of X and U are
identical in each. Specifically, when the empirical distribution of the observed pretreatment
covariates X is identical in the population and sample—F(X|/ =0) = F(X|I = 1)—then Agy

As /{h1<U>—ho<U)}d{F<U|I=0>—F<U|I=1>}, (6)



Misunderstandings about Causal Inference 485

vanishes. Similarly, when the empirical distribution of all unobserved pretreatment covariates is
identical in the population and sample—F (U|1=0)=F(U|I=1)—then Asg,; vanishes. Since X
is observed only in sample (and U is not observed at all) these conditions cannot be verified from
the observed sample alone. However, if the population distribution of X is known, weighting
or imputing can be used to adjust for the bias due to Ag, . Alternatively, if we assume that the
treatment effect is constant over X;, then g (X;) — go(X;) is constant, implying that Ag, =0.
Similarly, if the treatment effect is assumed to be constant over U;, then Ag,, =0.

In the breast cancer studies, sample selection error refers to differences between the women
in each study and those in the general population who are candidates for either treatment.
We might expect sample selection error to be smaller in the observational study with 5000
patients who are broadly representative of at least five states and four metropolitan areas than
in the small random assignment study with just 237 women, all of whom agreed to participate
and were willing and able to travel to the National Institutes of Health for follow-up visits. In
fact, the published studies on this experiment do not even contain information on exactly how
the patients were selected. For the randomized study, observable sample selection error might
include differences in income, information, education and severity of disease, whereas selec-
tion error that would be difficult for us to observe and adjust for might include psychological
conditions that are related to a woman’s decision to participate in a randomized trial.

3.2. Treatment imbalance

From previous definitions under the additive model of equation (3) and after a little algebra,
the treatment imbalance error term At =SATE — D as defined above can be decomposed into
the two additive components,

1 91(Xi) + go(Xi) 91(Xi) + go(Xi)
Aty = n/2 2 2 2
n/ ie{l;=1,T,=0} ie{lL=1,T;=1}

for observed covariates and a corresponding expression for At,, for unobserved covariates, with
h;(-) and U; replacing g;(-) and X; respectively. These terms can also be expressed as

ATX:/Md{f?@ﬂ:o,l:1)—17"(X|T=1,1=1)}, (7N
ATUZ/Md{F(U|T:0,1=1)—F(U|T:1,1=1)}. ®)

These components vanish if the treatment and control groups are balanced (i.e. have identical
empirical distributions) for the observed X; and unobserved U; covariates. For example, A1, =0
if the following equality holds:

FX|IT=1,I=1)=FX|T=0,I=1), )

which is entirely in sample and observable. If this condition is not met, we need to adjust the
data to meet this condition so that valid inference can be made. In contrast, verifying the exact
value of AT, is impossible since U is by definition unobserved.

In the breast cancer example, treatment imbalance error arises from observable and unob-
servable differences between women who receive breast conservation versus mastectomy. The
randomization in Lichter et al. (1992) ensures that, if the study is sufficiently large, no systematic
differences exist between the women who receive the two therapies. Their Table 1 compares the
characteristics of women in the two treatment groups and shows few differences. In contrast,
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because it was not randomized, the General Accounting Office breast cancer study is likely to
suffer from some treatment imbalance since doctors do not base treatment decisions on random-
number generators. Matching methods that were described in US General Accounting Office
(1994) and Rubin (1997) attempt to deal as well as possible with observed differences but, with-
out randomization, the samples may of course still differ in unobserved (and thus unadjusted)
ways.

4. Generalizations

Blocking in experimental research involves the random assignment of units to treatment and
control groups within strata (blocks) that are defined by a set of observed pretreatment covari-
ates (Fisher, 1935). Blocking guarantees that the treated and control groups are identical with
respect to these covariates so that they cannot affect our inferences. In contrast, matching is a
procedure that involves dropping, repeating or grouping observations from an observed data
set to reduce covariate imbalances between the treated and control groups that were not avoided
during data collection (Rubin, 1973). Blocking takes place before randomization of treatments,
whereas matching is implemented only after treatments have been assigned. Although their
goals are so close that the terms are often used interchangeably, we keep the distinction here.

In this section, we show how the essential logic of our decomposition remains unchanged
when blocking on all observed covariates, and when the quantity of interest is the average causal
effect for the treated units rather than all units. (Changing to an infinite population perspective
requires imagining a superpopulation from which the N population units are randomly drawn,
and then averaging over this extra variation. Our resulting estimand changes from PATE to the
superpopulation average treatment effect SPATE, i.e. SPATE= E{Y(1) — Y(0)} = E(PATE). We
denote the estimation error for SPATE as A* and define it as A* =SPATE — D=Ag+ A7+
SPATE — PATE, which directly extends our decomposition in Section 3. No other results or
analyses need change.)

4.1. Decomposition with complete blocking

Suppose that we select our n observations, completely block on X, and then randomly assign
T to half of the units within each block. Letting X denote the set of unique observed values of
the rows of X, our decomposition in equation (4) then becomes

A=Ag+SATE - D=Ag, +Ag, + > M}XATUM’
xeX

where w, is the proportion of units in each stratum x of X', and

h h
ATW:/ L) +ho(U)

3 d{FUIT=0,X=x,I1=1)—FU|T=1,X=x,1=1)}.

This result demonstrates that some basic intuition of our decomposition in equation (4) remains
the same, where blocking eliminates A, and does not affect Ag. It also shows that At,, changes
to the weighted average of A, ., which is defined within strata of unique values of X. Since U
and X are not necessarily independent, At, and A, may be related. Thus, blocking on the
observed confounders may have an effect on the unobserved confounders.

4.2. Average treatment effect on the treated
For some purposes, we might consider the quantity of interest to be the treatment effect aver-
aged over only the treated units. For example, a medical researcher may wish to learn the effect
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of a drug on those who receive or would receive the treatment and no others. In our motivating
example, we may be interested in the effect of receiving breast conservation, for the women who
choose that therapy. For this, common practice is to define the sample or population average
treatment effect on the treated, which are respectively

1
SATT=— > TE;
n/2 ie{l;=1,T;=1}

and

PATT = L > TE,
N* ie(1=1}
where N* = Ef\; 1 Ti is the number of treated units in the population. (The definition of SATT
assumes, as we do throughout, that half the units receive the treatment and half do not.)
An analogous version of our PATE estimation error decomposition in equation (4) also holds
for the estimation error for PATT, A’ =PATT — D, which is equal to

A=A+ Ay, + A, + AT, (10)

where

N*—n/2 - -
=l /{g1<X> — 90X} {FXIT=1,1=0) = FX|T=1,I=D)},

N* _n/2 B N
o=l [ @ = k@) HFUIT=1.1=0 - FUIT=11=1).

AT, :/go(X) d{FX|T=0,I=1)-F(X|T=1,I1=1)},

Ty =/ho(U) d{FWUIT=0,I=1)—FWU|T=1,I1=1)}.

Only the terms that are involved in Y;(0) enter treatment imbalance A/TX and A7 . This is
because SATT restricts itself to the treated units in sample for which 7; =1 and thus the terms
involving ¥;(1) in SATT and D are identical. This means that terms involving g1 (X;) and k1 (U;)
cancel on taking At =SATT — D and decomposing into A7 and Af, .

The sample selection error is given by

%
NTZRJ2 (NATT - SATT) = Al + Al

Sy»

¢=PATT—SATT=
where

NATT= 0 *Ti
ie{;=0.;=1} N*—n/2
is the non-sample average treatment effect. As a result, all the intuition that we develop for
PATE and SATE applies also to PATT and SATT, and this decomposition, as well.

Since almost any implementation of matching would affect Ag in estimating PATE and SATE,
applications of matching typically change the goal to PATT or SATT. For example, if matching
is implemented by selectively dropping only control units and the quantity of interest is changed
to SATT, then researchers avoid the sample selection error completely, i.e. Ag=0. PATT or
SATT could be used for randomized experiments, but if the treated group is randomly selected
these quantities will not differ systematically from PATE and SATE respectively.
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5. Reducing estimation error

We now attempt to clarify how the specific features of common research designs that are used in
a variety of disciplines can help to reduce estimation error. The decomposition that we offer in
Section 3 provides a guide for demonstrating how each contributes to reducing different com-
ponents of the error. We begin with the specific features of these designs and common statistical
assumptions and then discuss the research designs themselves.

5.1. Design features

We summarize the effects of different design features in Table 1, which shows the effect of each
design in reducing specific components of estimation error. For example, randomly sampling
units from a population, which is normally considered the sine qua non of survey research, works
to reduce sample selection error on average across experiments, i.e. E(Ag, )= E(Ag,) =0, but
not necessarily in any one sample. Only by changing the quantity of interest from PATE to
SATE, or equivalently by taking a census of the population, is the sample selection component
exactly eliminated in sample (As, = Ag,, =0). Weighting can eliminate the observed component
of estimation error but cannot affect the unobserved component except in as much as it is related
to the (observed) variables from which the weights are built.

Randomly assigning the values of the treatment variable (as in the randomized breast can-
cer study), which is normally considered the sine qua non of experimental research, reduces the
components of estimation error arising from observed and unobserved variables on average, but
not exactly in sample, i.e. E(At,)= E(AT,)=0. For example, if the randomized breast cancer
experiment could have been conducted many times we would expect no differences between the
women in the two treatment groups on average. However, in any one study, including the one

Table 1. Effects on the components of estimation error of various choices of design and
statistical assumptionst

Sample selection Treatment imbalance
estimation error estimation error
Observed  Unobserved Observed — Unobserved
Agy Ag,, Aty Aty
Design choice ave ave
Random sampling =0 =0
Focus on SATE rather than PATE = =0
Weighting for non-random sampling =0 =?
Large sample size —? —? ! !
Random treatment assignment =0 =0
Complete blocking =0 =?
Exact matching =0 =?
Assumption av av
No selection bias =0 =0 av
Ignorability =0
No omitted variables =0

tFor column Q, ‘— A’ (where 4 in the table is either a fixed but unknown point, denoted ‘7,
or 0) denotes E(Q) = A and lim,,—, o {var(Q) } =0, whereas ‘=28 A’ indicates only E(Q) = A.
No entry means no systematic effect, and ‘=?’ indicates an effect of indeterminate size and
direction. Matching is normally designed to estimate PATT or SATT and so this row in the
table should be read as affecting components in equation (10) rather than equation (4).
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that is actually being conducted, differences may remain between the women who receive breast
conservation and mastectomy that form a component of estimation error.

Complete blocking (i.e. before randomization) eliminates imbalance on observed variables
in sample, i.e. A1, =0, but its only effect on unobserved confounders is on the portion that is
correlated with X', which is eliminated or reduced as well. When estimating the superpopulation
average treatment effect, adding blocking to random treatment will always reduce estimation
variance of the causal effect compared with randomization alone. If PATE is the estimand, then
the same relationship also holds unless » is small. This is true no matter how badly the blocking
variables are chosen. (This result, which to our knowledge has not appeared before in the litera-
ture, is given in Appendix A; related results are discussed in Cochran and Cox (1957), Greevy
et al. (2004) and Imai (2007).) However, despite this gain in efficiency, a blocked experiment has
fewer degrees of freedom and so can have lower power in small samples; simulations indicate
that this is not an issue except in very small data sets (Imai ef al., 2007), and so blocking is
almost always preferable when feasible. Appendix A also formalizes the common recommenda-
tion in the experimental design literature that researchers increase the variation of the outcome
variables across blocks relative to that within blocks.

Lichter et al. (1992) blocked on three variables. If it had been feasible to block on other relevant
variables, such as psychological status or other clinical indicators of disease, efficiency could
have been improved. Of course, because patients cannot wait for another patient who matches
them on background characteristics to arrive at the hospital before they are randomized to
treatment, additional blocking may not have been feasible.

Exact matching in observational research has the same logical effect as blocking in experi-
mental research, but it also comes with four weaknesses that blocking does not have. First, to
avoid selection bias even with a random sample from the known population, the quantity of
interest must typically be changed from PATE to PATT or SATT. With PATE, we would prob-
ably make Ag, # 0 while trying to make At, =0; in contrast, by switching to PATT or SATT,
matching researchers can make At, =0 while not affecting Ag. Second, by definition, random
treatment assignment following matching is impossible. Third, exact matching is dependent on
the already collected data happening to contain sufficiently good matches. With blocking, we are
not dependent on any existing set of treatment assignments because the blocks are established
before randomization.

Finally, matching (or parametric adjustment) in the worst case scenario, such as on only a
subset of highly correlated covariates that are uncorrelated with 7 but related to post-treatment
variables, can increase bias compared with an unadjusted difference in means (Pearl, 2000).
Although observationalists typically argue that this exception for matching does not affect their
own research because they have sufficient prior theoretical knowledge to choose covariates
appropriately, the possibility always exists. Adding matching to an existing parametric adjust-
ment procedure almost always reduces model dependence, bias, variance and mean-square error
(Ho et al., 2007), but a parametric adjustment and matching taken together (like parametric
analysis on its own) can in this worst case scenario increase bias and variance compared with
an unadjusted difference in means.

This worst case scenario with matching and parametric analysis cannot occur with blocking
followed by random treatment assignment, even when blocking on irrelevant covariates or on
only a subset of relevant covariates. This benefit of blocking may seem especially surprising
to observationalists. However, the inefficiency and bias in procedures for observational data
can be seen, by analogy, as a result of needing to estimate the coefficients from an incorrectly
specified parametric model. In contrast, blocking is equivalent to parametric adjustment where
the model specification and the exact numerical values of the coefficients on the potential con-
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founders are known and so can be adjusted for exactly, even if all covariates are not available.
Thus, except in very small samples, blocking on pretreatment variables followed by random
treatment assignment cannot be worse than randomization alone. Blocking on variables related
to the outcome is of course more effective in increasing statistical efficiency than blocking on
irrelevant variables, and so it pays to choose the variables to block carefully. But choosing not
to block on a relevant pretreatment variable before randomization, that is feasible to use, is not
justified.

When the sample size is large, the variance of each of the four components of estimation error
becomes small. If n becomes large when the expected value of one of these components is 0, then
the value of that component will become smaller and at the limit will approach 0 even in sample.

5.2. Assumptions

Experimentalists and observationalists often make assumptions about unobserved processes on
the basis of prior evidence or theory. At worst, when the question is judged to be sufficiently
important but no better evidence exists, these assumptions are sometimes based on no more
than wishful thinking for lack of anything better to do. Either way, we need to understand these
assumptions precisely, and what their consequences are for the components of estimation error.

The second portion of Table 1 lists three assumptions that are commonly used in the same
way and for some of the same purposes as design features in the rest of Table 1. For example,
the assumption of no selection bias that is made in numerous studies is that E(Ag) =0, not
necessarily that Ag=0 in the observed sample. We could of course strengthen this assumption
(to Ag=0) but this level of optimism is rarely justified or made in the literature.

The assumption of ignorability, which is most often made in statistics, implies that the com-
ponent of estimation error due to unobserved variables is 0 in expectation (E(At,)=0). In
contrast, the assumption of no omitted variables (or no omitted variable bias), which is typically
made in classical econometrics and many of the social sciences, is that U is either uncorrelat-
ed with X or has no causal effect on Y, conditional on X the result is that At, =0 exactly
in sample. Assumptions need not be made about imbalance in observables since they can be
checked directly, but the various types of parametric models and non-parametric adjustment
procedures are routinely used to try to reduce At, (or A/TX) further.

5.3. Major research designs

The major research designs are each combinations of the features and assumptions that were
described above. Table 2 summarizes how a particular design affects each of the four components
of the estimation error.

We begin with what we call the ideal experiment, which involves selecting a large number
of units randomly from a well-defined population of interest, measuring and blocking on all
known confounders X and then randomly assigning values of the treatment variable 7' In this
situation, researchers can claim that

(a) As,~0and Ag, ~0 because random sampling ensures that E(Ag,) = E(Ag,) =0 and
a large n makes the variances of Ag, and Ag, small while yielding (N —n)/N ~0 and
SATE ~NATE,

(b) AT, =0 because of blocking and

(¢c) AT, ~0 because random assignment implies that E(AT,)=0 and the large n makes the
variance of AT, across repeated treatment assignments small also.

If the confounders in X include all confounders rather merely than all confounders that we
happen to know, then A, =0.
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Table 2. Components of bias when estimating PATE

Design choice Sample selection Treatment imbalance
estimation error estimation error

Observed  Unobserved — Observed — Unobserved

Agy Ag,, Aty Aty

Ideal experiment -0 —0 ﬁgo e 0

Randomized clinical trials #0 #0 =0 =0
(limited or no blocking) ave

Randomized clinical trials #0 #0 =0 =0
(complete blocking)

Social science field experiment #0 #0 -0 -0
(limited or no blocking)

Survey experiment (limited or -0 -0 -0 -0
no blocking)

Observational study (representative ~0 ~0 ~0 #0
data set, well matched)

Observational study (unrepresentative ~0 #0 ~0 #+0

but partially correctable data,
well matched)

Observational study (unrepresentative #0 #0 ~0 #0
data set, well matched)

tFor column Q,‘— 0’ denotes E(Q) =0 and lim,_, o {var(Q)} =0, whereas ‘=20’ indicates
E(Q)=0 for a design with a small n and so asymptotic limits are not relevant. Quantities in the
columns marked Ag, and Ag,, can be set to 0 if the quantity of interest is changed from PATE to
SATE. Matching is normally gesigned to estimate PATT or SATT and so designs using it should
be read as affecting components in equation (10) rather than equation (4).

Of course, for numerous logistical reasons, ideal experiments are rarely run in practice, and
many other research designs are used, depending on the constraints that are imposed by the re-
search situation. For example, in the most common form of randomized clinical trials in medicine,
nis small, the sample is not drawn randomly and not from a known population of interest, treat-
ment is randomly assigned and blocking is only sometimes used. The randomized breast cancer
study is one such example, as it was carried out by using 237 non-randomly selected women
who agreed to be in the trial and who were randomly assigned to treatment with some blocking.

In these trials, researchers must admit that Ag # 0, although they sometimes sidestep the
problem by switching their quantity of interest from PATE to SATE, and inferring to PATE
only after their results have been replicated in a different setting, perhaps by different research
teams. Researchers then are left basing a claim that Ag~0 on the hope or argument that their
subjects are sufficiently similar to subjects everywhere (‘a kidney is a kidney is a kidney is a
kidney ...") and so NATE ~ SATE; this claim is somewhat more plausible if estimates from
replications in diverse settings are relatively constant, but as seems to be recognized the gener-
alizations wind up depending on qualitative arguments rather than statistical science. As with
partially correctable observational studies, randomized clinical trials sometimes select patients
according to some known characteristics X and some unknown; in this situation, Ag, can equal
0 if a weighted difference in means is used instead of D, but even in this situation Ag, is not 0
exactly, in the limit, or on average.

Randomized clinical trials that block on all the information in X benefit directly because
AT, =0. However, medical researchers often block on only a few variables and so A, #0
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and of course AT, #0. Nevertheless, random assignment means that on average these error
components vanish, i.e. E(At,)= E(AT,)=0. Since n is small in most of these (including most
academic works as well as most phase I and II clinical trials), these expectations alone are not
so comforting, but, since the practice in this field is for many researchers to replicate roughly
the same experiments, the concept of At, and A, vanishing on average across many repeated
experiments is plausible.

In social science field experiments, researchers typically have large non-random convenience
samples, such as from one city, non-governmental organization or company to which they were
able to gain access and permission to run the experiment. They may or may not use blocking,
but they can randomly assign the values of the treatment variable. For example, Gerber and
Green (2000) conducted a voter mobilization experiment containing many one- and two-voter
households in New Haven. In these settings, since Ag 7 0 and replication of the experiment is
not common, often the best that researchers can do with regard to sample selection error is
to settle for estimating SATE rather than PATE. If they use complete blocking before random
assignment, A1, =0 and not otherwise. However, random assignment with a large n means
that E(At,) = E(AT,)=0 and the variances of both AT, and AT, drop as n increases.

A related research design involves survey experiments, where a large number of randomly
selected respondents from a known population of interest are randomly assigned to treatment
and control groups (the treatment in such studies often being different questionnaire wordings).
This design is also sometimes used in public policy experiments when the population of interest
is known. One example is the Job Corps evaluation, in which all applicants to the programme
were randomly assigned to the treatment group and were therefore allowed to enrol in Job
Corps at that time, or to the control group, where they were not allowed to enrol at that time
(Schochet et al., 2003). If the sample was properly drawn, E(As,) = E(Ag,) =0 with a small
variance tending towards 0. Unfortunately, random sampling of survey respondents is becoming
increasingly difficult with the rise in cell phones and unit non-response. Blocking is rarely used
in these experiments unless respondents’ characteristics are collected before the experiment, and
so A1, #0, but AT, and AT, both equal 0 in expectation and have small variances.

Finally, purely observational studies typically have large samples that are often randomly
selected, but blocking and random assignment are infeasible. The last three rows of Table 2
include a summary of results for three general categories of observational studies. The first
includes data that are representative of a fixed population, such as from a random sample. The
second is not a random sample but includes enough information to correct for unrepresenta-
tiveness, such as via weighting. The third is based on a convenience sample with no known
relationship to the population of interest. All three data types in Table 2 are assumed to contain
data that make high quality matching possible.

As an example of the three types of observational studies, the General Accounting Office
breast cancer researchers were interested in comparing breast cancer treatments among women
who would not necessarily choose to have their treatment selected randomly. To study that
question, nearly all women with breast cancer in five states and four metropolitan areas were
included, but the women chose which treatment to receive (US General Accounting Office,
1994). In these studies, Ag is 0 or reasonably close to it exactly or in expectation. When the
population differs from the sample, SATE is a sufficiently interesting quantity on its own that
its difference from PATE becomes a definitional matter of minor importance. Studies that select
on the basis of variables that are known in part, and corrected via weighting, imputation or
some other procedure, can eliminate or reduce Ag, but of course cannot affect Ag,, except in
as much as X and U are related. Much of the work in observational studies goes into collecting
the best pretreatment covariates, and adjusting for them after the data have been collected.



Misunderstandings about Causal Inference 493

If adjustment is done well, AT, ~0, but unfortunately in general AT, #0, and the absence of
random assignment means that these studies cannot avoid error due to U even on average or as n
grows. The hope of these researchers is that enough is known from ‘theory’, prior observational
studies or qualitative evidence (‘clinical information’) that an assumption of ignorability or no
omitted variable bias is sufficiently close for reasonably accurate inferences.

5.4. What is the best design?

If an ideal experimental design is infeasible, which of the remaining research designs is best?
This question is not directly material, since medical researchers cannot randomly select subjects
to administer medical procedures and those conducting observational studies of, say, the US
Congressional elections cannot randomly assign incumbency status to candidates for public
office. However, none of these procedures reduces all four components of estimation error to 0
with certainty.

From this perspective, the Achilles heel of observational studies is error due to imbalance in
unobserved variables, whereas in experimental studies it is a small » and the lack of random
selection. The estimation error in either can overwhelm all the good that these research designs
otherwise achieve, but both approaches have ways of attacking their biggest weaknesses. Neither
is better; both are adapted as well as possible to the constraints of their subjects and research
situation. Experimentalists may envy the large, randomly selected samples in observational
studies, and observationalists may envy the ability of experimentalists to assign treatments ran-
domly, but the good of each approach comes also with a different set of constraints that cause
other difficulties.

6. Fallacies in experimental research

Numerous experimental researchers across many fields make two mistakes that are easy to
understand and correct with reference to our decomposition of estimation error.

First, experimentalists often fail to block at all, whereas any observed covariates should be
fully blocked if feasible. The common practice of rerandomizing, when the first set of ran-
dom draws for treatment assignments is unsatisfactory, can be thought of as an inefficient
form of blocking. To see this, note that rerandomizing is equivalent to rejection sampling,
where sampling from a known unrestricted distribution and discarding any samples that do
not meet desired restrictions are equivalent to sampling directly from the restricted popula-
tion.

Blocking of course is not always feasible, such as when patients in a medical experiment trickle
in over time and treatment decisions need to be made for each quickly (as may have been so
in Lichter ez al. (1992)), or when important pretreatment covariates cannot be measured until
after treatment. However, when feasible, blocking on potentially confounding covariates should
always be used. As Box er al. (1978), page 103, wrote ‘block what you can and randomize what
you cannot’. Randomization is remarkable because it can eliminate imbalance on all covariates
in expectation, even if those covariates are unobserved. But randomization without blocking is
incapable of achieving what blocking can, which is to eliminate one component of estimation
error entirely, setting At, =0, rather than merely ensuring that E(AT,)=0. Since individual
researchers care about obtaining the right answer in their experiment, rather than on average
over their career or on average across different researchers in the scientific community, failing to
block on an observed covariate can be a huge missed opportunity. Greevy et al. (2004) pointed
out that algorithms have been developed to make blocking on many covariates considerably
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easier than it once was, and that blocking even on irrelevant variables introduces no inferen-
tial problems, although it may reduce statistical power or efficiency relative to better chosen
blocking covariates.

Second, experimenters who block on some or all available covariates and then randomize
sometimes evaluate the balance of the treated and control groups by conducting various hypoth-
esis tests, such as the difference in means. Senn (1994), page 1716, explained that this ‘common
procedure’ is ‘philosophically unsound, of no practical value, and potentially misleading’. He
wrote:

‘1. over all randomizations the groups are balanced; 2. for a particular randomization they are unbal-
anced. No ‘significant imbalance’ can cause 1 to be untrue and no lack of significant balance can make
2 untrue. The only reason to employ such a test must be to examine the process of randomization
itself. Thus, a significant result should lead to the decision that the treatment groups have not been
randomized, and hence either that the trialist has ... dishonestly manipulated the allocation or that
some incompetence ... has occurred.’

Any other purpose for conducting such a test is fallacious. Inappropriate randomization may
be more often an issue in social science field experiments than in medical research, as the social
scientist often conducts and implements random assignment only through a third party such as
a government, firm or other organization (Imai, 2005).

These points are easy to understand by using our decomposition, since under random assign-
ment E(AT, )= E(AT,)=0, but for unblocked randomization A, #0 (and of course A, #0
under random assignment with or without blocking). Hypothesis tests are used to evaluate
expectations, which we know are 0 owing to randomization, but are not needed to evaluate
the components of estimation error, which can be calculated directly, in sample, and without
any need for averaging over random sampling from a superpopulation or repeated experiments.
Moreover, even if the population from which X comes is sampled from a superpopulation, A,
and not its expectation is the relevant component of estimation error, and the difference in the
empirical cumulative distribution function between the treated and control groups is a directly
observable feature of the sample. So hypothesis tests in this circumstance have no relevant role.
This point is also central for a related fallacy that arises in matching, to which we now turn, and
for which results that we give are also relevant for experimenters.

7. The balance test fallacy in matching studies

7.1.  Matching
From the perspective of our decomposition, the only purpose of matching and blocking is to
reduce imbalance in the observables A%, and in any portion of imbalance in the unobservables
A’TU . for which U and X are related. Although blocking is easy to apply whenever the variables
to biock on are observed and treatment assignment is under the control of the investigator,
matching requires sometimes difficult searching to find the best matches in the available data
(Rosenbaum, 2002; Rubin, 2006). Matching also operates by deleting (or duplicating) obser-
vations and so, to keep the quantity of interest fixed during this process, researchers typically
focus on PATT or SATT and try to keep the treated group fixed.

Matching is not a method of estimation, and so any application of it must be followed by
a simple difference in means of the outcome or some other method. In the best case, the data
exactly match and so satisfy equation (9) so A/TX =0, without losing too many observations in
the process. In this best case of exact matching, 7 and X are unrelated in the matched sample,
and no further adjustments for X are necessary, and so the PATT or SATT can be estimated by
the simple difference in means, D. When imbalance A/TX isnot eliminated, further adjustment for
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X after matching may be necessary, such as via the same parametric methods as are commonly
applied when matching is not applied. Since methodological work on matching is growing fast,
the list of available matching algorithms from which to choose is also growing (Ho ez al., 2007).

Choosing the most appropriate algorithm for a given problem involves assessing how well
equation (9) holds in the matched samples. Ideally that would involve comparing the (joint)
empirical distributions of all covariates X between the matched treated and control groups.
However, when X is high dimensional, this is generally infeasible and thus lower dimensional
measures of balance are used instead. Standard practice in observational studies is for research-
ers to evaluate an implication of equation (9) for the chosen matching algorithm by conducting
t-tests for the difference in means for each variable in X between the matched treated and control
groups, thus seemingly addressing imbalance in at least one important aspect of a high dimen-
sional relationship. Other hypothesis tests, such as x?-, F- and Kolmogorov—Smirnov tests, are
also sometimes used for each covariate, but the same problems as those which we describe below
still apply, and so for expository purposes we focus on the most commonly used ¢-test.

7.2. The balance test fallacy

The practice of using hypothesis tests to evaluate balance is widespread and includes a large
volume of otherwise high quality work in economics (Smith and Todd, 2005), political science
(Imai, 2005), sociology (Lundquist and Smith, 2005), psychology (Haviland and Nagin, 2005),
education (Crosnoe, 2005), management science (Villalonga, 2004), medicine (Mangano et al.,
2006), public health (Novak et al., 2006) and statistics (Lu et al., 2001). Tables of ¢ and other
test statistics and/or their p-values are used as a justification in these and other references for
the adequacy of the chosen matching method, and statistically insignificant z-tests are used as
a stopping rule for maximizing balance in the search for the appropriate matched sample from
which to draw inferences. Although we do not trace the exact consequences of this practice in
the aforementioned studies, this approach is problematic for at least four reasons.

First, as an illustration, consider a data set on the ‘School dropout demonstration assistance
program’ which sought to reduce drop-out rates by a series of school ‘restructuring’ initiatives,
including curriculum reform and expanding teacher training (Stuart and Rubin, 2007). The
design is observational, with a school with the restructuring effort compared with a control
school. We use a subset of these data that includes 428 students from a treated school and 434
from a control school. The outcome variable Y is a test score (on a scale from 0 to 100), and
X includes a variety of variables but we focus here only on the baseline mathematics test score.
Matching analysis begins with the full data set and then selectively deletes students until equa-
tion (9) is best satisfied without losing too many observations. Suppose instead that we choose
a matching algorithm that chooses observations from the control group to discard randomly,
rather than (as usual) to maximize balance, i.e. we literally draw observations from the control
group with equal probability and discard them from the data. Clearly, this algorithm would not
affect expected balance between the treated and control group, or the bias in the ultimate anal-
ysis that satisfying equation (9) is meant to improve. In other words, on average across different
randomly generated deletions, A/TX would not drop. Yet, we can show that randomly deleting
observations seems to do wonders according to the z-test. To do this, we create a sequence
of matching solutions that randomly drop different numbers of control observations (with re-
sults averaged over 5000 draws) and plot the average results in Fig. 1(a) (we discuss Fig. 1(b)
later). The horizontal axis in Fig. 1(a) reports the number of control units that are randomly
dropped, whereas the vertical axis gives the size of the z-test. We have shaded in the area below a
t-test of 2, which is the region in which results are conventionally referred to as ‘statistically
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Fig. 1. Dangers in relying on t-statistics as a measure of balance (average value of a measure of balance
when a given number of control units are randomly dropped from the data set (out of a total of 434)): with
larger numbers of control units dropped (i.e. smaller numbers of control units in the resulting sample), the
value of the t-statistic becomes closer to 0, falsely indicating improvements in balance, even though true
balance does not vary systematically across the data sets (and efficiency declines); the difference in means
and quantile—quantile plot mean deviation, which are given in (b), correctly indicate no change in bias as
observations are randomly dropped

insignificant’. The curve on the plot clearly shows that, according to the ¢-test, randomly drop-
ping more control units does an ‘excellent’ job at achieving balance, reducing the statistic from
3.7 to 1.6 in Fig. 1(a). This of course makes no sense at all.

Second, the problem in Fig. 1 can be seen by recognizing that dropping observations can
influence not only balance but also statistical power, and unfortunately the z-test, like most
statistical tests, is a function of both. The more observations that are dropped, the less power
the tests have to detect imbalance in observed covariates. Formally, let ny¢ and npc be the sam-
ple sizes for the matched treated and matched control groups, and define ryy =nmt/nm where
R =NAmt +7me. Then, write the two-sample 7-test statistic with unknown and unequal variances
as

«/nm()_(mt - )_(mc)
VAsmi/rm +5he/(1—rm)}

where Xm =" T X; /nmi and X =" (1 — T}) X;/nmc are the sample means, and

Nm _
S Ti(Xi — Xmi)?
2 _ =l

mt Rt — 1
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and
> (1= T)(X; — Xmt)?
2 i=1
Sme = _1

represent the sample variances of the matched treated and control groups respectively. Hence,
the difference in sample means as a measure of balance is distorted in the #-test by three factors:

(a) the total number of remaining observations ny,,
(b) the ratio of remaining treated units to the total number of remaining observations rp, and
(c) the sample variance of X for the remaining treated and control units, s2,, and s2_

Since the values of (this and other) hypothesis tests are affected by factors other than balance,
they cannot even be counted on to be monotone functions of balance. The ¢-test can indicate
that balance is becoming better whereas the actual balance is growing worse, staying the same
or improving. Although we choose the most commonly used z-test for illustration, the same
problem applies to many other test statistics that are used in applied research. For example, the
same simulation applied to the Kolmogorov—Smirnov test shows that its p-value monotonically
increases as we randomly drop more control units. This is because a smaller sample size typically
produces less statistical power and hence a larger p-value.

Third, from a theoretical perspective, balance is a characteristic of the sample, not some
hypothetical population, and so, strictly speaking, hypothesis tests are irrelevant in this context
(Ho et al., 2007). Whether the quantity of interest is SATT, PATT or SPATT, balance affected
by matching affects only A’TX. Virtually all methods of adjustment condition on the observed
values of X, and so X can be dropped in these analyses only when equation (9) is satisfied in
sample, not in some population from which the data are hypothetically or actually drawn. For
the same reason that randomized blocks or paired matching are preferable to classical random-
ization in experimental design—i.e. the imbalance in the variables that defines the blocks can
be set to zero in sample, without having to hope that the sample size is sufficiently large for
the advantages of randomization to kick in (see also Greevy et al. (2004), page 264)—matching
on all observed differences in X is preferable whenever feasible and other goals such as var-
iance reduction are not harmed. The goal of reducing estimation error is reducing At and
not merely E(AT ), and so imbalance with respect to observed pretreatment covarlates—the
difference between F(X|T=1,I=1)and F(X|T =0, I = 1)—should be minimized without limit
where possible, so long as we are not unduly compromising other goals in the process (such as
efficiency).

Finally, we offer a simple model that conveys why matching contains no threshold below
which the level of imbalance is always acceptable. To see this, consider data that are generated
by the classical regression model, E(Y|T, X) =0+ T3+ X~ (Goldberger, 1991), a special case
of the model in equations (3). Then the regression of Y on a constant and 7" (without X) gives
a difference in means, the (conditional) bias of which as an estimate of 3is E(3— 3|T, X) =G~,
where G contains vectors of coefficients from regressions of each of the variables in X on a
constant and 7. Using matching to eliminate bias under this simplified data generation process
involves dropping or repeating observations so that G is as close to a matrix of Os as possible.
But what happens to bias if G is smaller than it was before matching but still not 0? The answer
is that the bias is reduced, but without knowledge of v—which researchers eschew estimating to
avoid inadvertently introducing selection error by choosing matching solutions that stack the
deck for their favoured hypotheses—it could be that a non-zero portion of G, when multiplied
by its corresponding elements of -y, will generate arbitrarily large bias. This also shows that no
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measure of balance which is a function of X alone can be guaranteed to be a monotone function
of bias without special assumptions (Rubin and Stuart, 2006), and so proper measures of imbal-
ance should always be minimized without limit, subject to efficiency constraints. Thus, whether
or not some hypothesis tests indicate that G is not significantly different from 0 is immaterial:
the smaller G is the better, either above or below the 7-test threshold of statistical significance,
since G (i.e. balance) is a characteristic of the observed data.

An argument that is related to our last point has been made in the context of randomized
experiments, where researchers have shown that even small (and statistically insignificant) differ-
ences in important (or what they call in this literature ‘prognostic’) covariates can result in large
differences in the results of the experiment (Senn, 1994; Pocock et al., 2002). However, the prob-
lem that we describe in this section with statistical power and stopping rules being a function
of the remaining sample size does not arise in randomized experiments.

Researchers analysing data from randomized experiments that did not block on all observed
covariates can check balance, but they do not need hypothesis tests to do so. The issue of bal-
ance is entirely in sample and involves no inference to populations or superpopulations. Thus,
everything that is needed to check balance and to determine it directly is available (Cochran,
1965). Issues of sample selection and sampling bias arise only in Ag; in contrast, At always
involves just the sample at hand, whether your perspective is sample based, population based
or superpopulation based. If the samples are not balanced, then researchers may wish to settle
for At being close to 0 in expectation or they can adjust. Adjustment will improve balance
and thus reduce Ar,, but if not done properly can be at the expense of estimation variance or
bias. Normally, however, even matching on irrelevant covariates will only slightly increase the
variance (Rubin and Thomas, 1996; Ho et al., 2007).

7.3. Better alternatives

In any study where all observed covariates were not fully blocked ahead of time, balance should
be checked routinely by comparing observed covariate differences between the treated and con-
trol groups. Any statistic that is used to evaluate balance should have two key features:

(a) it should be a characteristic of the sample and not of some hypothetical population and
(b) the sample size should not affect the value of the statistic.

If matching is used, the difference between the groups should be minimized without limit. A
difference in means is a fine way to start. Cochran (1968) suggested a rule of thumb that a
mean difference should not differ by more than a quarter of a standard deviation, though we
emphasize that imbalance should be minimized without limit. Other options include higher
order moments than the mean, non-parametric density plots and propensity score summary
statistics (e.g. Austin and Mamdani (2006) and Rubin (2001)).

A more general approach is quantile—quantile (or ‘QQ’-) plots that directly compare the
empirical distribution of two variables, although statistics that are based on QQ-plots can be
sensitive to small features of the data. Fig. 1(b) plots for comparison the difference in means and
a QQ-plot summary statistic, the average distance between the empirical quantile distributions
of the treated and control groups calculated over the same samples as for Fig. 1(a). (Formally,
this measure can be defined as (1/n)%}_, |Gy, (i/n) —qx, (i/n)| where gy and gy __ are the
empirical quantile functions of a covariate X for the matched treated and matched control
groups respectively and n = min(ny, nme).) Unlike the z-test, the level of balance does not
change for either statistic as more units are randomly dropped. These statistics are by no means
perfect, but they and the many other possibilities do not have the flaw that we show hypothesis
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tests have when used as a stopping rule for assessing balance. As is widely recognized, we also
ultimately need better ways of comparing two multidimensional empirical distributions, but
these should be sample quantities, not hypothesis tests.

Although these results indicate that future researchers should not use hypothesis tests as a
balance stopping rule, a reasonable question is how to interpret the considerable volume of
published literature that does so without reporting better balance statistics. One interpretation
would be that published tables which report small p-values or large z-tests should cause readers
to worry about balance, whereas the reverse would not suggest any level of comfort. In studies
with small numbers of observations and thus larger p-values, low levels of imbalance relative to
the unobserved importance of the covariates might be acceptable if the bias induced is swamped
by the uncertainty of the ultimate quantity of interest at the analysis stage; however, because
importance is unobserved, the threshold ‘low level’ is not defined, and so p-value cut-offs (e.g.
significance at the 0.05-level) are not of use for this purpose. Best practice should be to minimize
imbalance for all covariates, by using measures like those described above, and then to adjust
parametrically for any remaining differences (Ho et al., 2007).

8. Concluding remarks

Random selection and random assignment—which enable researchers to avoid some statistical
assumptions—along with matching and blocking—which adjust non-parametrically for heter-
ogeneity and potential confounders—are among the most practically useful ideas in the history
of statistical science. At times, they are also among the most misunderstood. We have tried to
lay out some of the key issues in this paper so that they will be more transparent to all, and
so that future researchers from both experimental and observational research traditions will be
able to avoid the fallacies of causal inference to which many have previously fallen prey.

Of course, our decomposition and analysis describe the basic contributions of each approach
and do not attempt to control for the many sophisticated data problems that inevitably arise in
a wide range of statistical research in the real world. For example, even in the best experimental
work, some information goes missing, randomly selected subjects sometimes refuse to partici-
pate, some subjects do not comply with treatment assignments, random numbers do not always
become assigned as planned or must be assigned at a more aggregated level than desired and
outcomes are not always measured correctly or recorded appropriately. To account for these
problems, when they cannot be fixed through better data collection, more sophisticated methods
become necessary. But, throughout that more advanced work, the more basic issues that have
been discussed here should remain at the forefront.
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Appendix A: Efficiency of adding blocking to random treatment

We first show that, if the estimand is SPATE, then blocking always improves classical randomization in
terms of statistical efficiency. Suppose that blocking is done on the variable X whose support is X'. Then,
the variances of D under classical randomization and blocking are given by

var®(D) = %[var{ Y(1)} + var{¥(0)}],
var®(D) = % > wylvar, {Y(1)} + var,{Y(0)}],

xeX

where var(-) represents the (super)population variance, var,(-) represents the conditional (super)popula-
tion variance with covariate value X; =x and w, is the known (super)population weight for the units with
X; =x. Then, if we define the within-block mean as Y(r), = E{Y(#)|X =x} for t =0, 1, we have

var{Y(H)} = E[var, {Y()) }] + var{Y(r),}
> E[var, {Y(n}]= > w,var,{Y(}.
xeX

Thus, it follows that the variance under blocking is smaller than or equal to the variance under classical
randomization, i.e. var®(D) > var®(D).

Next, we consider the case where the estimand is PATE. In this case, the variances of D under complete
randomization and blocking are given by

var®(D) = %[2 var{Y(1)} +2 var{¥(0)} — var(TE)], (11

var®(D) = % > we[2 var, {Y(1)} +2 var, {Y(0)} — var,(TE)], (12)
xeX
where var(-) (var,(-)) now represents the finite (conditional) population variance, and w, =n,/n with n,
being the number of observations with X; = x. Note that the third term in each of the variance expres-
sions cannot be estimated from the data. (However, if the treatment effect is constant across units, i.e.
Y;(1) — Y;(0) for all 7, this term will be 0.)
Now, for any variable ¢ and finite sample size n, the standard analysis-of-variance formula implies that

(n—1yvar(®) = 3 {(n, — 1) var,(6) +n (6, — 6},
xeX

where §, = Yie{x;=x}0i/ny, and 5= X! ,6;/n. Then,

xeX

1- x X < R
var(6)= > [ w.— s var,(0) + | wy + e (6, —6)%.

n—1 n—1
Applying this result and after some algebra, the difference between equations (11) and (12) can be written
as

var®(D) — var® (D) = O — Oy, (13)

where the two components ©p and Oy are closely related to the between-block variation and the within-
block variation of the potential outcomes respectively. They are defined as

—1 — STy
b= o=V T+ Y00}
1
Ow= s X (= var (D) + YO},

where m is the number of blocks, and
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m 3 w6, — b,)>

_ xeX
van,(8) = (m=1)> w,

xeX

is the weighted variance between blocks.

Equation (13) gives the exact expression for the gain in efficiency due to blocking. If we assume that m
stays constant while n grows, the first term, which is positive and o(1), dominates the second term, which
is negative but o(n~!). Hence, unless the sample size is small, blocking improves efficiency. Moreover,
applying the central limit theorem, the asymptotic variances under classical randomization and blocking
are given by n var®(D) and n var®(D) respectively. Then, the difference between these two asymptotic
variances equals

m—1

nOp = var, {¥(1), + ¥(0),},

which is always positive. Thus, blocking is asymptotically more efficient than classical randomization when
PATE is the estimand. Results similar to those given in this appendix can also be derived for the matched
pair design (see Imai (2007)).
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