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Imai, Jiang, and Malani. “Causal Inference with
Interference and Noncompliance in Two-Stage

Randomized Experiments.”
The supplementary material contains the following five sections:

• Section A provides the results for the complier average spillover effects under strati-
fied interference.

• Section B gives the proofs for the randomization-based inference approach.

• Section C gives the proofs for the regression-based approach.

• Section D presents the simulation studies.

• Section E proposes a model-based approach to overcome the limitations of the non-
parametric approach in the main text.

A Complier Average Spillover Effects under Stratified In-
terference

Stratified interference, i.e., Assumption 6, allows us to define the complier average spillover
effect (CASE), representing the average causal effect of treatment assignment mechanism
among compliers while holding their own treatment assignment at a fixed value,

CASE(z) =

PJ
j=1

Pnj

i=1{Yij(z, 1)� Yij(z, 0)}I{Dij(z, 1) = 1, Dij(z, 0) = 0}
PJ

j=1

Pnj

i=1 I{Dij(z, 1) = 1, Dij(z, 0) = 0}
.

We emphasize that this estimand is defined only when the spillover effect of treatment
assignment on the treatment receipt is present (otherwise, the denominator is zero). Note
that the compliers here are defined differently than those for the CADE. Specifically, the
compliers for the CASE are those who receive the treatment only when the assignment
mechanism Aj is equal to 1, i.e., units with {Dij(z, 1) = 1, Dij(z, 0) = 0}. Thus, the
CASE represents the average causal effect of the assignment mechanism on the outcome
among the compliers while holding their treatment assignment status constant.

A.1 Nonparametric Identification
To establish the nonparametric identification result for the CASE, we need two assump-
tions similar to Assumptions 4 and 5 for the CADE.

ASSUMPTION A1 (MONOTONICITY WITH RESPECT TO THE ASSIGNMENT MECHANISM)

Dij(z, 1) � Dij(z, 0) for all z = 0, 1.

The assumption states that a unit is no less likely to receive the treatment under the treat-
ment assignment mechanism Aj = 1 than under the treatment assignment mechanism
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Aj = 0, holding its own treatment assignment at a constant. In our application, Assump-
tion A1 implies that a household is no less likely to enroll in the RSBY when a greater
number of households are encouraged to do so.

Next, we introduce the assumption of restricted interference similar to Assumption 5,

ASSUMPTION A2 (RESTRICTED INTERFERENCE UNDER NONCOMPLIANCE FOR THE
ASSIGNMENT MECHANISM) Under Assumption 6, for a given unit i in cluster j, if

Dij(z, 1) = Dij(z, 0) for some z, then Yij(Dj(z, 1)) = Yij(Dj(z, 0)).

The assumption states that if the treatment receipt of a unit is not affected by the assign-
ment mechanism of the cluster, its outcome should also not be affected by the assignment
mechanism. Similar to Assumption 5, this assumption holds in case of no spillover effect
of treatment receipt on the outcome (equation (3)). As noted above, however, in case of no
spillover effect on the treatment receipt (equation (4)), the CASE is not well defined. Fur-
thermore, when both spillover effects are present, Assumption A2 is likely to be violated.

We provide the nonparametric identification and consistent estimation results for the
CASE that are analogous to those presented in Theorem 3 for the CADE.

THEOREM A1 (NONPARAMETRIC IDENTIFICATION AND CONSISTENT ESTIMATION OF
THE COMPLIER AVERAGE SPILLOVER EFFECT UNDER STRATIFIED INTERFERENCE)
Suppose that the outcome is bounded. Then, under Assumptions 1–3, 6 and A1–A2, we

have

lim
nj!1,J!1

CASE(z) = plim
nj!1,J!1

dSEY(z)
dSED(z)

for z = 0, 1.

Proof is in Appendix B.4.

A.2 Effect Decomposition
We consider the following decomposition of the CASE analogous to that of the CADE,

SEY(z) = CASE(z) · �c(z) + NASE(z) · {1� �c(z)}, (A1)

where the average noncomplier spillover effect is defined as,

NASE(z) =

PJ
j=1

Pnj

i=1{Yij(z, 1)� Yij(z, 0)}I{Dij(z, 1) = Dij(z, 0)}
PJ

j=1

Pnj

i=1 I{Dij(1, a) = Dij(0, a)}
,

and the proportion of compliers with respect to the treatment assignment is given by,

�c(z) =
1

N

JX

j=1

njX

i=1

I{Dij(z, 1) = 1, Dij(z, 0) = 0}.

For compliers with Dij(zij, 1) = 1 and Dij(zij, 0) = 0, the exclusion restriction, i.e.,
Assumption 3, implies the following decomposition,

Yij(zij, 1)� Yij(zij, 0) = {Yij(Dij = 1,D�i,j(zij, 1))� Yij(Dij = 0,D�i,j(zij, 0))}
+{Yij(Dij = 0,D�i,j(zij, 1))� Yij(Dij = 0,D�i,j(zij, 0))},
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which shows that the effect of treatment assignment mechanism on the outcome for a unit
equals the sum of the direct effect through its own treatment receipt and the indirect effect
through the treatment receipts of the other units in the same cluster. For noncompliers with
Dij(zij, 1) = Dij(zij, 0) = d where d = 0, 1, we can write the total effect of treatment
assignment mechanism as,

Yij(zij, 1)� Yij(zij, 0)

= Yij(Dij = d,D�i,j(Zij = zij, 1))� Yij(Dij = d,D�i,j(Zij = zij, 0)),

which characterizes the spillover effect of the treatment assignments of the other units on
the outcome through their treatment receipts. Assumption A2 guarantees this effect is zero
for noncompliers, implying NASE(z) = 0 and the identification of CASE(z).

A.3 Randomization-based Variances
We can also derive the randomization-based variances of the proposed spillover effect esti-
mators. We begin by defining the following quantities,

�2
b (z, a) =

1

J � 1

JX

j=1

⇢
njJ

N
Y j(z, a)� Y (z, a)

�2

,

�2
SE(z) =

1

J � 1

JX

j=1

⇢
njJ

N
SEYj(z)� SEY(z)

�2

,

where �2
b (z, a) is the between-cluster variance of Yij(z, a), and �2

SE(z) is the between-
cluster variance of SEYij(a). The next theorem presents the randomization-based variance.

THEOREM A2 (VARIANCES OF THE ITT SPILLOVER EFFECT ESTIMATORS) Under As-

sumptions 1, 2 and 6, we have

var
n
dSEY(z)

o
=

�2
b (z, 1)

J1
+

�2
b (z, 0)

J0
� �2

SE(z)

J
+

1X

a=0

1

JaJ

JX

j=1

var
n
bYj(z, a) | Aj = a

o
,

where

var
n
bYj(z, a) | Aj = a

o
=

1

njz

✓
1� njz

nj

◆
�2
j (z, a).

In contrast to the case of the direct effect estimators, the variances of the spillover effect
estimators are based on cluster-robust variances alone. However, no unbiased estimation of
the variance of [SEY(z) is available because �2

SE(z) is not identifiable. Hence, we propose
a conservative estimator of the variance,

cvar
n
[SEY(z)

o
=

b�2
b (z, 1)

J1
+
b�2
b (z, 0)

J0
,

which is no less than the true variance in expectation, i.e., E
h
cvar

n
[SEY(z)

oi
� var

n
[SEY(z)

o
.

The inequality becomes equality when the cluster-level spillover effect, i.e., njJ{Y j(z, 1)�
Y j(z, 0)}/N , is constant (see Appendix B.7 for a proof).

Finally, the variance of the CASE estimators can be derived by applying the Delta
method as done in Theorem 5. The resulting variances involve the covariance between
[SEY and [SED whose expression is shown in Appendix B.6.
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B Proofs for the Randomization-Based Inference Approach
B.1 Testable Conditions for No Spillover Effect of Treatment Receipt

on the Outcome
When there is no spillover effect of treatment receipt on the outcome, we define

(Y = y)Dij(z, a)

=
X

z�i,j2Z�i,j

I{Yij(Zij = z,Z�i,j = z�i,j) = y}Dij(Zij = z,Z�i,j = z�i,j)

·Pr(Z�i,j = z�i,j | Zij = z, Aj = a)

=
X

z�i,j2Z�i,j

I{Yij(Dij = 1) = y}Dij(Zij = z,Z�i,j = z�i,j) Pr(Z�i,j = z�i,j | Zij = z, Aj = a)

for any y. Because

lim
nj!1

{Pr(Z�i,j = z�i,j | Zij = 1, Aj = a)� Pr(Z�i,j = z�i,j | Zij = 0, Aj = a)} = 0,

we can obtain limnj!1 (Y = y)Dij(1, a) � limnj!1 (Y = y)Dij(0, a) under Assump-
tion 4. As a result, we have (Y = y)D(1, a) � (Y = y)D(0, a), where

(Y = y)D(z) =
1

N

JX

j=1

njX

i=1

(Y = y)Dij(z).

Similarly, we can obtain limnj!1 (Y = y)(1�D)(1, a) � limnj!1 (Y = y)(1�D)(0, a).
Therefore, we obtain the following testable conditions for no spillover effect of the treat-
ment receipt on the outcome,

lim
nj!1

(Y = y)Dij(1, a) � lim
nj!1

(Y = y)Dij(0, a),

lim
nj!1

(Y = y)(1�D)(1, a) � lim
nj!1

(Y = y)(1�D)(0, a).

Similar to the unbiased estimation of the ITT effects, we can use

\(Y = y)D(z, a) =
1
N

PJ
j=1 nj

\(Y = y)Dj(z, a)I(Aj = a)
1
J

PJ
j=1 I(Aj = a)

,

\(Y = y)(1�D)(z, a) =
1
N

PJ
j=1 nj

\(Y = y)(1�D)j(z, a)I(Aj = a)
1
J

PJ
j=1 I(Aj = a)

,

where

\(Y = y)Dj(z, a) =

Pnj

i=1 I(Yij = y)DijI(Zij = z)Pnj

i=1 I(Zij = z)
,

\(Y = y)(1�D)j(z, a) =

Pnj

i=1 I(Yij = y)(1�Dij)I(Zij = z)Pnj

i=1 I(Zij = z)

to unbiasedly estimate (Y = y)D(z, a) and (Y = y)(1�D)(z, a), respectively. As a re-
sult, we can use the observed data to test whether there is a spillover effect of treatment
receipt on the outcome.
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B.2 Proof of Theorem 2
We first prove the nonparametric identification as the cluster size nj goes to infinity for each
j. Under this scenario, the treatment assignment of one unit becomes asymptotically inde-
pendent of another unit’s treatment assignment given its treatment assignment mechanism
within the same cluster. This yields

lim
nj!1

{Pr(Z�i,j = z�i,j | Zij = z, Aj = a)� Pr(Z�i,j = z�i,j | Aj = a)} = 0

for z = 0, 1. Therefore, we have,

lim
nj!1

DED(a)

= lim
nj!1

JX

j=1

njX

i=1

X

z�i,j2Z�i,j

{Dij(1, z�i,j)�Dij(0, z�i,j)}Pr(Z�i,j = z�i,j | Aj = a)

= lim
nj!1

JX

j=1

njX

i=1

X

z�i,j2Z�i,j

Cij(z�i,j) Pr(Z�i,j = z�i,j | Aj = a), (A2)

where the last equality follows from Assumption 4. Next, we show that the numerator of
CADE(a) is equal to,

lim
nj!1

DEY(a)

= lim
nj!1

JX

j=1

njX

i=1

X

z�i,j2Z�i,j

{Yij(1, z�i,j)� Yij(0, z�i,j)}Pr(Z�i,j = z�i,j | Aj = a)

= lim
nj!1

JX

j=1

njX

i=1

X

z�i,j2Z�i,j

{Yij(1, z�i,j)� Yij(0, z�i,j)}Cij(z�i,j) Pr(Z�i,j = z�i,j | Aj = a),

(A3)

where the last equality follows from Assumption 5. Thus, we obtain the desired result,

lim
nj!1

CADE(a) = lim
nj!1

DEY(a)
DED(a)

.

Next, we establish the consistent estimation. We assume the following restriction on
interference in (Sävje et al., 2017) hold, which still allows the total amount of interference
within each cluster to grow with the cluster size,

1

nj

njX

i=1

njX

i0=1

◆ii0 = o(nj), where ◆ii0 =

⇢
1 if I`iI`i0 = 1 for some ` = 1, 2, . . . , nj,

0 otherwise,

and

I`i =

8
<

:

1 if Dij(zj) 6= Dij(z0
j) for z`j 6= z0`j and z�`,j = z

0
�`,j,

1 if i = `,

0 otherwise,
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and

1

nj

njX

i=1

njX

i0=1

ii0 = o(nj), where ii0 =

⇢
1 if K`iK`i0 for some ` = 1, 2, . . . , nj,

0 otherwise,

and

Ki` =

8
<

:

1 if Yij(zj) 6= Yij(z0
j) for z`j 6= z0`j and z�i,j = z

0
�i,j,

1 if i = `,

0 otherwise.

From Sävje et al. (2017), under the proposed conditions, we can consistently estimate the
DED and the DEY within each cluster,

plim
nj!1

[DEDj(a) = DEDj(a), plim
nj!1

[DEYj(a) = DEYj(a) (A4)

for all j. Furthermore, because Aj is the sampling indicator of a simple random sampling
from (n1JD1(z, a)/N, . . . , nJJDJ(z, a)/N), as the number of clusters also tends to infin-
ity, we have,

plim
nj!1,J!1

[DED(a) = DED(a).

Similarly, we can obtain

plim
nj!1,J!1

[DEY(a) = DEY(a).

Putting all together establishes the consistent estimation of the CADE. 2

B.3 Asymptotic Normality of the ITT Effect Estimators Under Strat-
ified Interference

We provide the conditions for the asymptotic normality of the estimator of the ITT effect
on the outcome. The conditions for the estimator of the ITT effect on the treatment receipt
can be obtained in a similar fashion. Ohlsson (1989) establishes the asymptotic normality
for two-stage sampling from a finite population. In our setting, we generalize his result to
the two-stage randomized experiments by verifying the conditions required by his result in
our context. We first state the following finite population central limit theorem.

THEOREM A3 (FINITE POPULATION CENTRAL LIMIT THEOREM (HÁJEK, 1960)) Let v̄S
be the average of a simple random sample of size n from a finite population {v1, . . . , vN}.

As N ! 1, if

1

min(n,N � n)
· max1iN(vi � v̄N)2PN

i=1(vi � v̄N)2/(N � 1)
�! 0, (A5)

where v̄N is the average of the population, then (v̄S � v̄N)/
p

var(v̄S)
d�! N(0, 1).

Equation (A5) holds if vi’s are bounded and n and N go to infinity.
We next introduce the central limit theorem under two-stage sampling.
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THEOREM A4 (FINITE POPULATION CENTRAL LIMIT THEOREM UNDER TWO-STAGE

SAMPLING (OHLSSON, 1989)) Let vij be the outcome of interest of unit i in cluster j,

where i = 1, . . . , nj and J = 1, . . . , J . Define v·j =
Pnj

i=1 vij . Clusters are sampled

from the population in the first stage and units are sampled in the second stage within the

sampled clusters from the first stage. Let Wj be the sample indicator of the first stage and

Iij be the sample indicator of the second stage. Define Tj =
PJ

i=1 Iijvij , T =
PJ

j=1 WjTj ,

Q =
PJ

j=1 Wjv·j , �2
j = var(Ti | W1, . . . ,WJ) and µ(4)

j = E{(Tj � v·j)4 | W1, . . . ,WJ}.

Then,

T � E(T )p
var(T )

d�! N(0, 1)

if the following three conditions hold

Q� E(Q)p
var(Q)

d�! N(0, 1), (A6)

PJ
j=1 µ

(4)
j E(W 4

j )PJ
j=1 �

2
jE(W 2

j )
�! 0, (A7)

cov(W 2
j ,W

2
j0)  0, for j 6= j0. (A8)

To apply Theorem A4, we decompose [DEY(a) as,

[DEY(a) =
1

Ja

JX

j=1

I(Aj = a)·njJ

N
DEYj(a)+

1

J

JX

j=1

I(Aj = a)·njJ

N
{[DEYj(a)�DEYj(a)},

(A9)
and [SEY(z) as,

[SEY(z) =
JX

j=1

Aj ·
njJ

N

⇢
Y j(z, 1)

J1
+

Y j(z, 0)

J0

�
�

JX

j=1

Y j(z, 0)

J0

+
1

J1

JX

j=1

Aj ·
njJ

N
{bYj(z, 1)� Y j(z, 1)}�

1

J0

JX

j=1

(1� Aj) ·
njJ

N
{bYj(z, 0)� Y j(z, 0)}.

(A10)

Denote the first part of each equation above as,

[DEY
cluster

(a) =
1

Ja

JX

j=1

I(Aj = a) · njJ

N
DEYj(a),

[SEY
cluster

(z) =
JX

j=1

Aj ·
njJ

N

⇢
Y j(z, 1)

J1
+

Y j(z, 0)

J0

�
�

JX

j=1

Y j(z, 0)

J0
.

We can treat [DEY
cluster

(a) and [SEY
cluster

(z) as Q in Theorem A4. For [DEY(a), we treat
I(Aj = a) as Wj and njJ

NJa
DEYij(a) as vij in Theorem A4; for [SEY(z), we treat Aj as Wj

and njJ
N

n
Yij(z,1)

J1
+ Yij(z,0)

J0

o
as vij in Theorem A4. We first give the regularity conditions

for the asymptotic normality of [DEY
cluster

(a) and [SEY
cluster

(z):
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(a) Equation (A5) holds for n = J1, N = J and vi = njJ
N Y j(z, a) for z = 0, 1 and

a = 0, 1.

(b) Equation (A5) holds for n = J1, N = J and vi =
njJ
N Y j(z, 1)/J1 +

njJ
N Y j(z, 0)/J0

for z = 0, 1.

For a bounded outcome, these two conditions are satisfied as the number of clusters goes
to infinity. According to Theorem A3, under Condition (a), as J ! 1, we have

[DEY
cluster

(a)� DEY(a)q
var{[DEY

cluster
(a)}

d�! N(0, 1), (A11)

and under Condition (b), as J ! 1, we have,

[SEY
cluster

(z)� SEY(z)q
var{[SEY

cluster
(z)}

d�! N(0, 1). (A12)

Second, we require the following conditions,

(c) As J ! 1
PJ

j=1 E[{[DEYj(a)� DEYj(a)}4 | Aj = a]pr(Aj = a)
⇣PJ

j=1 E[{[DEYj(a)� DEYj(a)}2 | Aj = a]pr(Aj = a)
⌘2 �! 0

for a = 0, 1.

(d) As J ! 1
PJ

j=1 E[{bYj(z, a)� Y j(z, a)}4 | Aj = a]pr(Aj = a)
⇣PJ

j=1 E[{bYj(z, a))� Y j(z, a)}2 | Aj = a]pr(Aj = a)
⌘2 �! 0

for z = 0, 1 and a = 0, 1.

To give some intuition on when these two conditions hold, we show that Conditions (c)
and (d) hold if the outcome is bounded and E[{[DEYj(a) � DEYj(a)}2 | Aj = a] and
E[{[DEYj(a) � DEYj(a)}2 | Aj = a] are equal across different clusters. In this case, the
term on the left hand side of Condition (c) is of the same order as

1

J
· E[{[DEYj(a)� DEYj(a)}4 | Aj = a]

E[{[DEYj(a)� DEYj(a)}2 | Aj = a]2pr(Aj = a)
,

which converges to zero if the outcome is bounded and J goes to infinity. Therefore,
Condition (c) holds. Similar argument applies to Condition (d).

We now verify the conditions in Theorem A4. For DEY(a), Condition (A6) fol-
lows from equation (A11), Condition (A7) follows from Condition (c) above, and Con-
dition (A8) follows from cov(Aj, Aj0)  0 for j 6= j0. Therefore, as J ! 1, we have,

[DEY(a)� DEY(a)r
var

n
[DEY(a)

o
d�! N(0, 1).
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Similarly, for SEY(z), Condition (A6) in follows from equation (A12), Condition (A7)
follows from Condition (d) above, and Condition (A8) follows from cov(Aj, Aj0)  0 for
j 6= j0. Therefore, as J ! 1, we have,

[SEY(z)� DEY(z)r
var

n
[SEY(z)

o
d�! N(0, 1).

Analogous conditions can be provided for the the asymptotic normality of [DED(a) and
[SED(z). In a similar way, we can show the asymptotic normality for any linear combina-
tions of {[DED(a), [DEY(a)} and {[SED(z),[SEY(z)}. The conditions are satisfied if Y is
bounded. As a result, we can further show that
0

@
var

n
[DED(a)

o
cov

n
[DED(a), [DEY(a)

o

cov
n
[DED(a), [DEY(a)

o
var

n
[DEY(a)

o

1

A
�1/2 

[DED(a)� DED(a)
[DEY(a)� DEY(a)

!
d�! N2(02, I2),

0

@
var

n
[SED(z)

o
cov

n
[SED(z),[SEY(z)

o

cov
n
[SED(z),[SEY(z)

o
var

n
[SEY(z)

o

1

A
�1/2 

[SED(z)� SED(z)
[SEY(z)� SEY(z)

!
d�! N2(02, I2).

In general, the asymptotic normality of the ITT effects only requires some mild condi-
tions as long as the outcome is bounded and J goes to infinity. We leave the development
of more refined CLTs under the two-stage randomized experiments to future work.

Finally, because \CADE(a) equals the ratio of [DEY(a) and [DED(a), and \CASE(z)
equals the ratio of [SEY(a) and [SED(a), we can obtain the CLT for the CADE and CASE
by applying the Delta method.

B.4 Proof of Theorems 3 and A1
According to the asymptotic normality results shown in Appendix B.3, we have

plim
nj!1,J!1

[DEY(a) = DEY(a), plim
nj!1,J!1

[DED(a) = DED(a).

As a result,

lim
nj!1,J!1

CADE(a) = plim
nj!1,J!1

[DEY(a)
[DED(a)

.

For the CASE, under Assumption A1, we have

SED(z) =
JX

j=1

njX

i=1

{Dij(z, 1)�Dij(z, 0)} =
JX

j=1

njX

i=1

Cij(z).

We can then obtain

SEY(z) =
JX

j=1

njX

i=1

{Yij(z, 1)� Yij(z, 0)} =
JX

j=1

njX

i=1

{Yij(z, 1)� Yij(z, 1)}{Dij(z, 1)�Dij(z, 0)}
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=
JX

j=1

njX

i=1

{Yij(z, 1)� Yij(z, 1)}I{Dij(z, 1) = 1, Dij(z, 0) = 0},

where the second equality follows from Assumption A2. Thus, we have the following
equality,

CASE(z) =
SEY(z)
SED(z)

.

Based on the asymptotic normality results shown in Appendix B.3, we have

plim
nj!1,J!1

[SEY(z) = SEY(z), plim
nj!1,J!1

[SED(a) = SED(a).

This implies the nonparametric identification and consistent estimation of the CASE. 2

B.5 Proof of Theorem 4
We prove a general version of Theorem 4 using the general weight w⇤

j whereas in the main
text, we consider the special case with w⇤

j = njJ/N . Using this general weight, we can
rewrite the causal quantities as follows,

DED(a) =
1

J

JX

j=1

w⇤
j

nj

njX

i=1

Dij(1, a)�Dij(0, a), SED(z) =
1

J

JX

j=1

w⇤
j

nj

njX

i=1

Dij(z, 1)�Dij(z, 0),

DEY(a) =
1

J

JX

j=1

w⇤
j

nj

njX

i=1

Y ij(1, a)� Y ij(0, a), SEY(z) =
1

J

JX

j=1

w⇤
j

nj

njX

i=1

Y ij(z, 1)� Y ij(z, 0),

CADE(a) =

PJ
j=1

w⇤
j

nj

Pnj

i=1{Yij(1, a)� Yij(0, a)}I{Dij(1, a) = 1, Dij(0, a) = 0}
PJ

j=1

w⇤
j

nj

Pnj

i=1 I{Dij(1, a) = 1, Dij(0, a) = 0}
,

CASE(z) =

PJ
j=1

w⇤
j

nj

Pnj

i=1{Yij(z, 1)� Yij(z, 1)}I{Dij(z, 1) = 1, Dij(z, 0) = 0}
PJ

j=1

w⇤
j

nj

Pnj

i=1 I{Dij(z, 1) = 1, Dij(z, 0) = 0}
.

The corresponding estimators for the ITT effects can be written as,

[DED(a) =
1

Ja

JX

j=1

w⇤
j
bDj(1, a)I(Aj = a)� 1

Ja

JX

j=1

w⇤
j
bDj(0, a)I(Aj = a),

[SED(z) =
1

J1

JX

j=1

w⇤
j
bDj(z, 1)I(Aj = 1)� 1

J0

JX

j=1

w⇤
j
bDj(z, 0)I(Aj = 0),

[DEY(a) =
1

Ja

JX

j=1

w⇤
j
bYj(1, a)I(Aj = a)� 1

Ja

JX

j=1

w⇤
j
bYj(0, a)I(Aj = a),

[SEY(z) =
1

J1

JX

j=1

w⇤
j
bYj(z, 1)I(Aj = 1)� 1

J0

JX

j=1

w⇤
j
bYj(z, 0)I(Aj = 0),

where

bDj(z, a) =

Pnj

i=1 DijI(Zij = z)Pnj

i=1 I(Zij = z)
, bYj(z, a) =

Pnj

i=1 YijI(Zij = z)Pnj

i=1 I(Zij = z)
.

10



Theory of simple random sampling implies,

E{ bDj(z, a) | Aj = a} =
1

nj

njX

i=1

Dij(z, a), E{bYj(z, a) | Aj = a} =
1

nj

njX

i=1

Y ij(z, a).

Thus, it is straightforward to show that the estimators for the ITT direct and spillover effects
are unbiased. Below, without loss of generality, we prove the theorem only for the case
with w⇤

j = 1 since the general results can be obtained by simply transforming the outcome
Y ⇤
ij = w⇤

jYij and treatment receipt D⇤
ij = w⇤

jDij .
First, note that

cov(Zij, Zi0j) =

8
<

:

nj1

nj

⇣
1� nj1

nj

⌘
if i = i0,

� nj1

nj(nj�1)

⇣
1� nj1

nj

⌘
if i 6= i0.

Then, from Assumption 1, we have

var{bYj(z, a) | Aj = a}

=
1

n2
jz

var

( njX

i=1

YijI(Zij = z) | Aj = a

)

=
1

n2
jz

njX

i=1

Y 2
ij(z, a)cov{I(Zij = z), I(Zij = z)}

+
1

n2
jz

X

i 6=i0

Yij(z, a)Yi0j(z, a)cov{I(Zij = z), I(Zi0j = z)}

=
1

njnjz

✓
1� njz

nj

◆ njX

i=1

Y 2
ij(z, a)�

1

njznj(nj � 1)

✓
1� njz

nj

◆X

i 6=i0

Yij(z, a)Yi0j(z, a)

=
1

njnjz

✓
1� njz

nj

◆ njX

i=1

Y 2
ij(z, a)�

1

njznj(nj � 1)

✓
1� njz

nj

◆2

4
( njX

i=1

Yij(z, a)

)2

�
njX

i=1

Y 2
ij(z, a)

3

5

=
1

(nj � 1)njz

✓
1� njz

nj

◆ njX

i=1

Y 2
ij(z, a)�

nj

njz(nj � 1)

✓
1� njz

nj

◆
Y

2
j(z, a)

=
1

njz

✓
1� njz

nj

◆
�2
j (z, a),

and

cov{bYj(1, a), bYj(0, a) | Aj = a}

=
1

nj1nj0

njX

i=1

Yij(1, a)Yij(0, a)cov{I(Zij = 1), I(Zij = 0)}

+
1

nj1nj0

X

i 6=i0

Yij(1, a)Yi0j(0, a)cov{I(Zij = 1), I(Zi0j = 0)}

= � 1

n2
j

njX

i=1

Yij(1, a)Yij(0, a) +
1

n2
j(nj � 1)

X

i 6=i0

Yij(1, a)Yi0j(0, a)

11



= � 1

(nj � 1)nj

njX

i=1

Yij(1, a)Yij(0, a) +
1

(nj � 1)
Y j(1, a)Y j(0, a)

= � 1

nj(nj � 1)

njX

i=1

{Yij(1, a)� Y j(1, a)}{Yij(0, a)� Y j(0, a)}.

Therefore, we obtain,

var{[DEYj(a) | Aj = a}
=

X

z=0,1

var{bYj(z, a) | Aj = a}� 2cov{bYj(1, a), bYj(0, a) | Aj = a}

=
X

z=0,1

1

njz

✓
1� njz

nj

◆
�2
j (z, a) +

1

nj

�
�2
j (1, a) + �2

j (0, a)� !2
j (a)

 

=
�2
j (1, a)

nj1
+

�2
j (0, a)

nj0
�

!2
j (a)

nj
,

which yields,

var{[DEY(a)}

= E
"
1

J2
a

JX

j=1

var{[DEYj(a) | Aj = a}I(Aj = a)

#
+ var

(
1

Ja

JX

j=1

DEYj(a)I(Aj = a)

)

=

✓
1� Ja

J

◆
�2
DE(a)

Ja
+

1

JaJ

JX

j=1

var
n
[DEYj(a) | Aj = a

o
.

Next, we compute the variance of SEY(z). From Assumption 1, we have,

cov{bY (z, 1), bY (z, 0)}

=
1

J1J0
cov

(
JX

j=1

bYj(z, 1)I(Aj = 1),
JX

j=1

bYj(z, 0)I(Aj = 0)

)

=
1

J1J0
E
"

cov

(
JX

j=1

bYj(z, 1)I(Aj = 1),
JX

j=1

bYj(z, 0)I(Aj = 0) | A1, . . . , AJ

)#

+
1

J1J0
cov

(
JX

j=1

Y j(z, 1)I(Aj = 1),
JX

j=1

Y j(z, 0)I(Aj = 0)

)

=
1

J1J0
cov

(
JX

j=1

Y j(z, 1)I(Aj = 1),
JX

j=1

Y j(z, 0)I(Aj = 0)

)

=
1

J1J0

JX

j=1

Y j(z, 1)Y j(z, 0)cov{I(Aj = 1), I(Aj = 0)}

+
1

J1J0

JX

j=j0

Y j(z, 1)Y j0(z, 0)cov{I(Aj = 1), I(Aj0 = 0)}

= � 1

J2

JX

j=1

Y j(z, 1)Y j(z, 0) +
1

J2(J � 1)

JX

j=j0

Y j(z, 1)Y j0(z, 0)

12



= � 1

J2

JX

j=1

Y j(z, 1)Y j(z, 0) +
1

J � 1
Y (z, 1)Y (z, 0)� 1

J2(J � 1)

JX

j=1

Y j(z, 1)Y j(z, 0)

= � 1

J(J � 1)

JX

j=1

Y j(z, 1)Y j(z, 0) +
1

J � 1
Y (z, 1)Y (z, 0)

= � 1

J(J � 1)

JX

j=1

{Y j(z, 1)� Y (z, 1)}{Y j(z, 0)� Y (z, 0)}

=
1

2J

�
�2
SE(z)� �2

b (z, 1)� �2
b (z, 0)

 
,

where the second equality follows from the law of total variance and the third equality
follows from the conditional independence Zj??Zj0 | (A1, . . . , AJ) for j 6= j0. Therefore,
we have

var{[SEY(z)}
= var{bY (z, 1)}+ var{bY (z, 0)}� 2cov{bY (z, 1), bY (z, 0)}

=

✓
1� J1

J

◆
�2
b (z, 1)

J1
+

✓
1� J0

J

◆
�2
b (z, 0)

J0
� 1

J

�
�2
SE(z)� �2

b (z, 1)� �2
b (z, 0)

 

+
1

J1J

JX

j=1

var
n
bYj(z, 1) | Aj = 1

o
+

1

J0J

JX

j=1

var
n
bYj(z, 0) | Aj = 0

o

=
�2
b (z, 1)

J1
+

�2
b (z, 0)

J0
� �2

SE(z)

J
+

1

J1J

JX

j=1

1

njz

✓
1� njz

nj

◆
�2
j (z, 1)

+
1

J0J

JX

j=1

1

njz

✓
1� njz

nj

◆
�2
j (z, 0).

2

B.6 Covariances

B.6.1 cov([DEY(a), [DED(a))

We introduce some notation. Define

⇣jzz0(a) =
1

nj � 1

njX

i=1

{Yij(z, a)� Y j(z, a)}{Dij(z
0, a)�Dj(z

0, a)},

⇣j(1�0)(a) =
1

nj � 1

njX

i=1

{DEYij(a)� DEYj(a)}{DEDij(a)� DEDj(a)}.

Similar to the calculation of var{bYj(z, a) | Aj = a} and cov{bYj(1, a), bYj(0, a) | Aj = a}
in the proof of Theorem 4, it is easy to show that

cov{bYj(1, a), bDj(0, a) | Aj = a} = � 1

nj
⇣j10(a), cov{bYj(0, a), bDj(1, a) | Aj = a} = � 1

nj
⇣j01(a),

cov{bYj(z, a), bDj(z, a) | Aj = a} =
1

njz

✓
1� njz

nj

◆
⇣jzz(a).
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Thus, we can obtain

cov
n
[DEYj(a), [DEDj(a) | Aj = a

o
=

X

z=0,1

1

njz

✓
1� njz

nj

◆
⇣j(z, a) +

1

nj
⇣j10(a) +

1

nj
⇣j01(a)

=
⇣j11(a)

nj1
+

⇣j00(a)

nj0
�

⇣j(1�0)(a)

nj
.

As a result,

cov
n
[DEY(a), [DED(a)

o
= E

"
1

J2
a

JX

j=1

cov{[DEYj(a), [DEDj(a) | Aj = a}I(Aj = a)

#

+cov

"
1

Ja

JX

j=1

DEYj(a)I(Aj = a),
1

Ja

JX

j=1

DEDj(a)I(Aj = a)

#

=

✓
1� Ja

J

◆
⇣2DE(a)

Ja
+

1

JaJ

JX

j=1

cov
n
[DEYj(a), [DEDj(a) | Aj = a

o
.

B.6.2 cov([SEY(a), [SED(a))

We introduce some notation. Define

⇣2b (z, a) =
1

J � 1

JX

j=1

{Y j(z, a)� Y (z, a)}{Dj(z, a)�D(z, a)},

⇣2SE(z) =
1

J � 1

JX

j=1

{SEYj(z)� SEY(z, a)}{SEDj(z)� SEY(z, a)}.

We can decompose cov{[SEY(z), [SED(z)} as,

cov{[SEY(z), [SED(z)}
= cov{bY (z, 1), bD(z, 1)}+ cov{bY (z, 0), bD(z, 0)}� cov{bY (z, 1), bD(z, 0)}� cov{bY (z, 0), bY (z, 0)}.

We then calculate each component,

cov{bY (z, a), bD(z, a)} = E
"
1

J2
a

JX

j=1

cov{bYj(z, a), bDj(z, a) | Aj = a}I(Aj = a)

#

+cov

(
1

Ja

JX

j=1

Y j(z, a)I(Aj = a),
1

Ja

JX

j=1

Dj(z, a)I(Aj = a)

)

=

✓
1� Ja

J

◆
⇣2b (z, a)

Ja
+

1

JaJ

JX

j=1

cov
n
bYj(z, a), bDj(z, a) | Aj = a

o
,

cov{bY (z, 1), bD(z, 0)} = cov

(
1

J1

JX

j=1

Y j(z, 1)I(Aj = 1),
1

J0

JX

j=1

Dj(z, 0)I(Aj = 0)

)
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= � 1

J(J � 1)

JX

j=1

{Y j(z, 1)� Y (z, 1)}{Dj(z, 0)�D(z, 0)},

cov{bY (z, 0), bD(z, 1)} = cov

(
1

J0

JX

j=1

Y j(z, 0)I(Aj = 0),
1

J1

JX

j=1

Dj(z, 1)I(Aj = 1)

)

= � 1

J(J � 1)

JX

j=1

{Y j(z, 0)� Y (z, 0)}{Dj(z, 1)�D(z, 1)}.

Therefore,

cov{bY (z, 1), bD(z, 0)}+ cov{bY (z, 0), bD(z, 1)}

= � 1

J(J � 1)

JX

j=1

{Y j(z, 0)� Y (z, 0)}{Dj(z, 1)�D(z, 1)}

� 1

J(J � 1)

JX

j=1

{Y j(z, 1)� Y (z, 1)}{Dj(z, 0)�D(z, 0)}

=
1

J
{⇣2SE � ⇣2b (z, 1)� ⇣2b (z, 0)}.

As a result, we have

cov{[SEY(z), [SED(z)}

=

✓
1� J1

J

◆
⇣2b (z, 1)

J1
+

1

J1J

JX

j=1

cov
n
bYj(z, 1), bDj(z, 1) | Aj = 1

o
+

✓
1� J0

J

◆
⇣2b (z, 0)

Ja

+
1

J0J

JX

j=1

cov
n
bYj(z, 0), bDj(z, 0) | Aj = 0

o
� 1

J
{⇣2SE � ⇣2b (z, 1)� ⇣2b (z, 0)}

=
⇣2b (z, 1)

J1
+

⇣2b (z, 0)

J0
� ⇣2SE(z)

J
+

1

J1J

JX

j=1

cov
n
bYj(z, 1), bDj(z, 1) | Aj = 1

o

+
1

J0J

JX

j=1

cov
n
bYj(z, 0), bDj(z, 0) | Aj = 0

o
.

B.7 Variance Estimators for the ITT Effects

We first show that the variance estimator is conservative for var{[DEY(a)}. From the clas-
sical theory of simple random sampling, we know E{b�2

j (z, a) | Aj = a} = �2
j (z, a). In

addition, we have

E{b�2
DE(a)}

=
1

Ja � 1
E
(

JX

j=1

[DEY
2

j(a)I(Aj = a)� Ja[DEY(a)2
)

=
1

Ja � 1
E
 

JX

j=1

[var{[DEYj(a) | Aj = a}+ DEYj(a)
2]I(Aj = a)

!
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� Ja
Ja � 1

[var{[DEY(a)}+ DEY(a)2]

=
Ja

J(Ja � 1)

JX

j=1

[var{[DEYj(a) | Aj = a}+ Ja(J � 1)

(Ja � 1)J
�2
DE(a)�

Ja
Ja � 1

var{[DEY(a)}

= �2
DE(a) +

1

J

JX

j=1

[var{[DEYj(a) | Aj = a}.

and

E{b�2
b (z, a)}

=
1

Ja � 1
E
(

JX

j=1

bY 2
j (z, a)I(Aj = a)� JabY (z, a)2

)

=
1

Ja � 1
E
 

JX

j=1

[var{bYj(z, a) | Aj = a}+ Y j(z, a)
2]I(Aj = a)

!
� Ja

Ja � 1
[var{bY (z, a)}+ Y (z, a)2]

=
Ja

J(Ja � 1)

JX

j=1

[var{bYj(z, a) | Aj = a}+ Ja
J(Ja � 1)

JX

j=1

Y j(z, a)
2

� Ja
Ja � 1

[var{bY (z, a)}+ Y (z, a)2]

=
Ja

J(Ja � 1)

JX

j=1

[var{bYj(z, a) | Aj = a}+ Ja(J � 1)

(Ja � 1)J
�2
b (z, a)�

Ja
Ja � 1

var{bY (z, a)}

=
Ja

J(Ja � 1)

JX

j=1

[var{bYj(z, a) | Aj = a}+ Ja(J � 1)

(Ja � 1)J
�2
b (z, a)

� Ja
Ja � 1

"✓
1� Ja

J

◆
�2
b (z, a)

Ja
+

1

JaJ

JX

j=1

var
n
bYj(z, 1) | Aj = a

o#

= �2
b (z, a) +

1

J

JX

j=1

[var{bYj(z, a) | Aj = a}.

Therefore, we have,

E[cvar{[DEY(a)}]

=

✓
1� Ja

J

◆
�2
DE(a)

Ja
+

✓
1� Ja

J

◆
1

JaJ

JX

j=1

var
n
[DEYj(a) | Aj = a

o

+
1

J2

JX

j=1

⇢
�2
j (1, a)

nj1
+

�2
j (0, a)

nj0

�

= var{[DEY(a)}+ 1

J2

JX

j=1

!2
j (a)

nj1

� var{[DEY(a)}.
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We then consider the variance estimator for SEY(z),

cvar
n
[SEY(z)

o
=

b�2
b (z, 1)

J1
+
b�2
b (z, 0)

J0
.

We have

E[cvar{[SEY(z)}]

=
�2
b (z, 1)

J1
+

�2
b (z, 0)

J0
+

1X

a=0

1

JaJ

JX

j=1

var
n
bYj(z, a) | Aj = a

o

= var{[SEY(z)}+ �2
SE(z)

J

� var{[SEY(z)}.

Next, we consider the estimator for cov{[DEY(a), [DED(a)}. Similarly, we have E{b⇣j(z, a) |
Aj = a} = ⇣j(z, a) and hence,

E{b⇣2DE(a)}

=
1

Ja � 1
E
(

JX

j=1

[DEYj(a)[DEDj(a)I(Aj = a)� Ja[DEY(a)[DED(a)

)

=
1

Ja � 1
E
 

JX

j=1

h
cov{[DEYj(a), [DEDj(a) | Aj = a}+ DEYj(a)DEDj(a)

i
I(Aj = a)

!

� Ja
Ja � 1

h
cov{[DEY(a), [DED(a)}+ DEY(a)DED(a)

i

=
Ja

J(Ja � 1)

JX

j=1

[cov{[DEYj(a), [DEDj(a) | Aj = a}+ Ja(J � 1)

(Ja � 1)J
⇣DE(a)

� Ja
Ja � 1

cov{[DEY(a), [DED(a)}

= ⇣2DE(a) +
1

J

JX

j=1

[cov{[DEYj(a), [DEDj(a) | Aj = a}.

Therefore, we have,

E[ccov{[DEY(a), [DED(a)}]

=

✓
1� Ja

J

◆
⇣2DE(a)

Ja
+

✓
1� Ja

J

◆
1

JaJ

JX

j=1

cov
n
[DEYj(a), [DEDj(a) | Aj = a

o

+
1

J2

JX

j=1

⇢
⇣j(1, a)

nj1
+

⇣j(0, a)

nj0

�

= cov{[DEY(a), [DED(a)}+ 1

J2

JX

j=1

⇣j(1�0)(a)

nj1

� cov{[DEY(a), [DED(a)}.
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B.8 Asymptotically Conservative Variance Estimator for the CADE

Although cvar
n
\CADE(a)

o
in equation (9) is not a conservative variance estimator in finite

samples, we show that it is asymptotically conservative. First, the asymptotic variance of
\CADE(a) can be rewritten as,

var


1

DED(a)

n
dDEY(a)� CADE(a) · dDED(a)

o�
,

which is the variance of a linear combination of dDED(a) and \DEY(a). Similar to the proof
in Section B.7, we can show,

E
⇢

1

DED(a)2


cvar

n
dDEY(a)

o
� 2

DEY(a)
DED(a)

ccov
n
dDEY(a), dDED(a)

o
+

DEY(a)2

DED(a)2
cvar

n
dDED(a)

o��

� var


1

DED(a)

n
dDEY(a)� CADE(a) · dDED(a)

o�
.

Under the restriction on interference in (Sävje et al., 2017), [DED(a) converges to DED(a)

and [DEY(a) converges to DEY(a). Therefore, we obtain the desired result for a bounded
outcome,

E
h
cvar

n
\CADE(a)

oi
� avar

n
\CADE(a)

o
.

2

C Proofs for the Regression-Based Approach
As in case of the randomization inference approach, it is suffice to prove the case with
w⇤

j = 1 since the results are applicable directly with any other weight by multiplying Dij

and Yij with appropriate constants. Because the columns in the design matrix of the regres-
sion models corresponding to different treatment assignment mechanisms are orthogonal
to each other, we can prove the results separately for each treatment assignment mecha-
nism. Therefore, we prove the theorems for a given a and with abuse of notation use the
same notation for the sub-matrix that consists of the columns corresponding to the treat-
ment assignment mechanism a in a full matrix. For example, the proof of Theorem 6 uses
Xij to denote (I(Aj = a), ZijI(Aj = a)) while in the main text we use Xij to represent
(I(Aj = 1), I(Aj = 0), ZijI(Aj = 1), ZijI(Aj = 0)) .

C.1 Proof of Theorem 6
Define,

Nza =
JX

j=1

njX

i=1

I(Zij = z, Aj = a)wij =
JX

j=1

njX

i=1

I(Zij = z, Aj = a)
1

Janjz
= 1

and N+a = N0a +N1a. Then, the OLS estimate can be written as,

(b↵a, b↵1a)
> = (X>WX)�1X>WY ,
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where

(X>WX)�1 =

✓
N+a N1a

N1a N1a

◆�1

=

✓
2 1

1 1

◆�1

=

✓
1 �1

�1 2

◆
,

X>WY =

 
bY (1, a) + bY (0, a)

bY (1, a)

!
.

Therefore, we have,

b↵a = bY (0, a), b↵1a = [DEY(a).

2

C.2 Proof of Theorem 7
We first write the two-stage least squares regression as,

Yij =
1X

a=0

�aI(Aj = a) +
1X

a=0

�1a
bDijI(Aj = a) + ✏ij,

bDij =
1X

a=0

b�wls
a I(Aj = a) +

1X

a=0

b�wls
1a ZijI(Aj = a).

where b�wls
a and b�wls

1a are the weighted least squares estimate of the corresponding coeffi-
cients from the model given in equation (10). Then, we obtain,

Yij =
1X

a=0

�aI(Aj = a) +
1X

a=0

�1a

(
1X

a=0

b�wls
a I(Aj = a) +

1X

a=0

b�wls
1a ZijI(Aj = a)

)
I(Aj = a) + ✏ij

=
1X

a=0

�aI(Aj = a) +
1X

a=0

�1a

�
b�wls
a I(Aj = a) + b�wls

1a ZijI(Aj = a)
 
+ ✏ij

=
1X

a=0

(�a + �1ab�wls
a )I(Aj = a) +

1X

a=0

�1ab�wls
1a ZijI(Aj = a) + ✏ij.

Comparison of this with the weighted regression model of Yij on Zij given in equation (11)
implies,

b↵wls
a = b�w2sls

a + b�w2sls
1a b�wls

a , b↵wls
1a = b�w2sls

1a b�wls
1a .

Thus, using Theorem 6, we have,

b�w2sls
1a = \CADE(a), b�w2sls

a = bY (0, a)� \CADE(a) · bD(0, a).

C.3 Proof of Theorem 8
We prove the results only for the direct effects on the outcome. The results for the direct
effects on the treatment receipt are similar.

Pj = W1/2
j Xj(X

>WX)�1X>
j W

1/2
j
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◆0

@
1p
Janj1

1nj1
1p
Janj1

1nj1

1p
Janj0
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1
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@
0nj1

1p
Janj1

1nj1
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Janj0

1nj0 � 1p
Janj0

1nj0

1

A

0

@
1p
Janj1

1nj1
1p
Janj1

1nj1

1p
Janj0

1nj0 0nj0

1

A
>

=

 
1

Janj1
1nj1⇥nj1 0nj1⇥nj0

0nj0⇥nj1
1

Janj0
1nj0⇥nj0

!
,

where 1m (0m) is an m-dimensional vector of ones (zeros) and 1m1m2 (0m1m2) is an m1 ⇥
m2 dimensional matrix of ones (zeros).

Since (1>
nj1

,0>
nj0

)> and (0>
nj1

,1>
nj0

)> are two eigenvectors of Inj�Pj whose eigenvalue
is (Ja � 1)/Ja, we have,

(Inj �Pj)
�1/2(1>

nj1
,0>

nj0
)> =

r
Ja

Ja � 1
(1>

nj1
,0>

nj0
)>,

(Inj �Pj)
�1/2(0>

nj1
,1>

nj0
)> =

r
Ja

Ja � 1
(0>

nj1
,1>

nj0
)>.

Thus,

(Inj �Pj)
�1/2WjXj =

r
Ja

Ja � 1

 
1

Janj1
1nj1

1
Janj1

1nj1

1
Janj0

1nj0 0nj0

!
.

For a unit with (Aj = a, Zij = 1), we have b✏ij = Yij � b↵a � b↵1a = Yij � bY (1, a), and
for a unit with (Aj = a, Zij = 0), we have b✏ij = Yij � b↵a = Yij � bY (0, a). As a result,

b✏>j (Inj �Pj)
�1/2WjXj

=

r
Ja

Ja � 1
(Y1j � bY (1, a), . . . , Ynjj � bY (0, a))

 
1

Janj1
1nj1

1
Janj1

1nj1

1
Janj0

1nj0 0nj0

!
,

=

r
Ja

Ja � 1

0

@
1

Janj1

nPnj

i=1 YijZij � nj1
bY (1, 1)

o
+ 1

Janj0

nPnj

i=1 Yij(1� Zij)� nj0
bY (0, 1)

o

1
Janj1

nPnj

i=1 YijZij � nj1
bY (1, 1)

o

1

A
>

=

s
1

Ja(Ja � 1)

 
bYj(1, 1)� bY (1, 1) + bYj(0, 1)� bY (0, 1)

bYj(1, 1)� bY (1, 1)

!>

.

Let Vj = X>
j Wj(Inj � Pj)�1/2b✏jb✏>j (Inj � Pj)�1/2WjXj and vjk1k2 be the k1k2-th

entry of Vj . Then,

vj11 =
1

Ja(Ja � 1)

n
bYj(1, a)� bY (1, a) + bYj(0, a)� bY (0, a)

o2

,

vj12 = vj22 +
1

Ja(Ja � 1)

n
bYj(1, a)� bY (1, a)

on
bYj(0, a)� bY (0, a)

o
,

vj22 =
1

Ja(Ja � 1)

n
bYj(1, a)� bY (1, a)

o2

.
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The definition of the cluster-robust HC2 variance implies,

cvarcluster
hc2 {(b↵wls

a , b↵wls
1a )

>} = (X>WX)�1

(
JX

j=1

VjI(Aj = a)

)
(X>WX)�1,

which yields

cvarcluster
hc2 (b↵wls

1a ) =
JX

j=1

(4vj22 � 2vj12 � 2vj21 + vj11)I(Aj = a)

=
1

Ja(Ja � 1)

JX

j=1

[{bYj(1, a)� bYj(0, a)}� {bY (1, a)� bY (0, a)}]2

=
b�2
DE(a)

Ja
,

cvarcluster
hc2 (b↵wls

1 ) =
JX

j=1

(vj22 � vj12 � vj21 + vj11)I(Aj = a)

=
1

Ja(Ja � 1)

JX

j=1

{bYj(0, a)� bY (0, a)}2

=
b�2
b (0, a)

Ja
,

and

ccovcluster
hc2 (b↵wls

a , b↵wls
1a ) =

1

J2
a

X

j

(�2vj22 + 2vj12 + vj21 � vj11)I(Aj = a)

=
1

Ja(Ja � 1)

n
bYj(1, a)� bY (1, a)

on
bYj(0, a)� bY (0, a)

o

� 1

Ja(Ja � 1)

JX

j=1

{bYj(0, a)}� bY (0, a)}2.

Thus, we obtain,

cvarcluster
hc2 (b↵wls

a + b↵wls
1a ) = cvarcluster

hc2 (b↵wls
1a ) + cvarcluster

hc2 (b↵wls
11 ) + 2ccovcluster

hc2 (b↵wls
a , b↵wls

1a ) =
b�2
b (1, a)

Ja
.

Next, we calculate the individual-robust HC2 variance. Similarly, using the orthogo-
nality among the covariates, we have

cvarind
hc2{(b↵wls

a , b↵wls
1a )

>} = (X>WX)�1

(
JX

j=1

njX

i=1

w2
ijb✏⇤2ij I(Aj = a)(1� Pij)

�1XijX
>
ij

)
(X>WX)�1,

For units with Zij = z, we obtain

Pij = wijJaX
>
ij

✓
1 �1

�1 2

◆
Xij =

1

njz
,

b✏⇤ij = Yij � bYj(z, a).
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Therefore, we have

JX

j=1

njX

i=1

w2
ijb✏⇤2ij I(Aj = a)(1� Pij)

�1XijX
>
ij

=
1

J2
a

JX

j=1

I(Aj = a)

njX

i=1

(
(Yij � bYj(1, a))2I(Zij = 1)

nj1(nj1 � 1)
+

(Yij � bYj(0, a))2I(Zij = 0)

nj0(nj0 � 1)

)
XijX

>
ij

=
1

J2
a

0

@
PJ

j=1

⇣
b�2
j (1,a)

nj1
+

b�2
j (0,a)

nj�nj1

⌘
I(Aj = a)

PJ
j=1

b�2
j (1,a)

nj1
I(Aj = a)

PJ
j=1

b�2
j (1,a)

nj1
I(Aj = a)

PJ
j=1

b�2
j (0,a)

nj�nj1
I(Aj = a)

1

A .

As a result,

cvarind
hc2(b↵wls

11 ) =
1

J2
a

JX

j=1

✓b�2
j (1, a)

nj1
+

b�2
j (0, a)

nj � nj1

◆
I(Aj = a),

and hence,

cvar
n
[DEY(a)

o
=

✓
1� Ja

J

◆
cvarcluster

hc2 (b↵wls
1a ) +

Ja
J
cvarind

hc2(b↵wls
1a ).

2

C.4 Relations to Random Effects Models for Spilt-Plot Designs
Because two-stage experiments have a hierarchical structure, we re-express the linear model
as a random effects model. First, suppose that Yij(1, a) � Yij(0, a) = ↵aij , then we can
write the potential outcomes as,

Yij(z, a) = I(z = 1)↵aj + ↵0aj + I(z = 1)raij + r0aij,

where ↵0aj = Y j(0, a), ↵aj = Yj(1, a) � Yj(0, a), r0aij = Yij(0, a) � Y j(0, a) and raij =

↵aij � ↵aj . Then, the realized outcome can be expressed as,

Yij =
X

a=0,1

↵0ajI(Aj = a) +
X

a=0,1

↵ajZijI(Aj = a) +
X

a=0,1

I(Aj = a)r0aij +
X

a=0,1

ZijI(Aj = a)raij,

=
X

a=0,1

↵0aI(Aj = a) +
X

a=0,1

↵aZijI(Aj = a) +
X

a=0,1

I(Aj = a)r0aij +
X

a=0,1

ZijI(Aj = a)raij

+
X

a=0,1

s0ajI(Aj = a) +
X

a=0,1

sajZijI(Aj = a), (A13)

where ↵a = Y (1, a)� Y (0, a), ↵0a = Y (0, a), saj = ↵aj � ↵a and s0aj = ↵0aj � ↵0a.
Given the similarity between equations (A13) and (11), we can treat the last four terms

of equation (A13) as the error term ✏ij in equation (11), and decompose it into two parts,
i.e., ✏ij = ✏Bj + ✏Wij , where

✏Bj =
X

a=0,1

s0ajI(Aj = a) +
X

a=0,1

sajZijI(Aj = a) =
X

a=0,1

I(Aj = a)(s0aj + sajZij),

✏Wij =
X

a=0,1

I(Aj = a)r0aij +
X

a=0,1

ZijI(Aj = a)raij =
X

a=0,1

I(Aj = a)(r0aij + raijZij),
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where ✏Bj can be viewed as the between-cluster residual and ✏Wij can be viewed as the
within-cluster residual. The cluster-robust HC2 variance in our regression-based approach
corresponds to ✏Bj and the individual-robust HC2 variance corresponds to ✏Wij . BecausePnj

i=1 ✏Wij =
Pnj

i=1 ✏WijI(Zij = z) = 0 holds for all j and z = 0, 1, the adjustment for
b✏⇤ij is necessary to ensure the residual from our regression also satisfies this condition. The
term w2

ijb✏⇤2ij XijX>
ij in the individual-robust variance corresponds to raij + Zijr0aij , and the

term X>
j Wjb✏jb✏>j WjXj in the cluster-robust variance corresponds to s0aj + sajZij .

C.5 Proof of Theorem 9
Define
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First, for a given a, it is straightforward to show,
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We then compute the projection matrix,
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Similar to the proof of Theorem 8 , (1>
nj1

,0>
nj0

)> and (0>
nj1

,1>
nj0

)> are two eigenvectors
of Inj � Pb whose eigenvalue is (Ja � 1)/Ja. Thus, we have,
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From the regression model given in equation (13), we obtain the following residuals for
observations with Zij = z,

b⌘ij = Yij � bY (z, a)� \CADE(a){Dij � bD(z, a)}.
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This implies,
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From the definition of the cluster-robust HC2 variance, we have
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We then calculate the individual-robust generalization of HC2 variance,
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where Qij is the individual leverage and b⌘⇤ij is the adjusted residual to have X>
j b⌘⇤j = 0nj ,
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(a)b⇠2j (1, a)

nj1

9
=

; I(Aj = a),

S0 =
JX

j=1

8
<

:
b�2
j (0, a) + \CADE(a)b⇣2j (0, a) + \CADE

2
(a)b⇠2j (0, a)

nj � nj1

9
=

; I(Aj = a).

Putting all together,

cvarind
hc2(b�w2sls

1a )

=
1

J2
a
[DED

4
(a)

JX

j=1

h
4 bD2(1, a)S1 + bD2(0, a)S0 � 4{ bD(1, a) + bD(0, a)}{ bD(1, a)S1 + bD(0, a)S0}

+{ bD(1, a) + bD(0, a)}2{S1 + S0}
i
I(Aj = a)

=
1

[DED
2
(a)

S1 + S0

J2
a

.

Therefore, we have,

cvar
n
\CADE(a)

o
=

✓
1� Ja

J

◆
cvarcluster

hc2 (b�w2sls
1a ) +

Ja
J
cvarind

hc2(b�w2sls
1a ).

2
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D Simulation Studies
We examine the performance of different variance estimators for the CADE. In particular,
we compare our variance estimator with three other commonly used variance estimators:
HC2 variance (MacKinnon and White, 1985), cluster-robust variance (Liang and Zeger,
1986), and cluster-robust HC2 variance (Bell and McCaffrey, 2002). Following the nota-
tion used in Section 3.5.2, the HC2 variance is defined as,

(M>WM)�1

(
JX

j=1

njX

i=1

w2
ijb⌘2ij(1�Qij)

�1MijM
>
ij

)
(M>WM)�1,

whereas the cluster-robust variance is defined as,

(M>WM)�1

(
JX

j=1

M>
j Wjb⌘jb⌘>j WjMj

)
(M>WM)�1.

Finally, the cluster-robust HC2 variance is defined in equation (14).
Below, we consider three scenarios: no spillover effect of the treatment receipt on the

outcome, no spillover effect of the treatment assignment on the treatment receipt, and both
spillover effects present. In each scenario, we choose equal size n in all J clusters, and
generate the data with three different settings regarding the number of clusters and cluster
sizes while holding the total number of units N = nJ constant: (n = 10, J = 250),
(n = 250, J = 10), and (n = 50, J = 50). We find that our proposed variance estimators
perform well so long as the number of clusters is large. The HC2 variance estimator tends
to underestimate the true variance while the cluster-robust HC2 variance estimator tends to
overestimate it.

D.1 No Spillover Effect of Treatment Receipt on the Outcome
We first conduct a simulation study under the assumption of no spillover effect of treatment
receipt on the outcome. In this scenario, Assumptions 1–6 are satisfied. We begin by
defining the complier status variable C⇤

ij(a) for a given treatment assignment mechanism
a = 0, 1 as,

C⇤
ij(a) =

8
>><

>>:

0 if Dij(1, a) = Dij(0, a) = 0,

1 if Dij(1, a) = 1, Dij(0, a) = 0,

2 if Dij(1, a) = Dij(0, a) = 1,

(A14)

where 0, 1, and 2 represent never-taker, complier, and always-taker, respectively. We sam-
ple C⇤

ij(a) from a categorical distribution with probabilities (0.1, 0.6, 0.3) for a = 1 and
(0.3, 0.6, 0.1) for a = 0. We obtain the potential values Dij(z, a) from the realized value
of C⇤

ij(a) according to equation (A14).
In the absence of the spillover effect of the treatment receipt on the outcome, the po-

tential values of the outcome only depend on one’s treatment receipt. Therefore, we first
generate Yij(Dij = 0) via Yij(Dij = 0)

i.i.d.⇠ N(0, 1) and then generate the Yij(Dij = 1) as,

✓j
i.i.d.⇠ N(✓, �2

b ), Yij(Dij = 1)� Yij(Dij = 0)
i.i.d.⇠ N(✓j, �

2
w),
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Figure A1: Coverage rates of 95% confidence intervals when there is no spillover effect
of the treatment receipt on the outcome. The confidence intervals based on the proposed
variance estimator (solid circle with black line) are compared with those based on the HC2
variance (open circle with dotted line), the cluster-robust variance (grey solid triangle with
dotted line), and the cluster-robust HC2 variance (grey open triangle with solid line). The
cluster size is indicated by n whereas J is the number of clusters. The horizontal axis
represents the intracluster correlation coefficient.

where �2
b represents the between-cluster variance and �2

w is the within-cluster variance. We
generate the treatment assignment mechanism Aj with Pr(Aj = a) = 1/2 for a = 0, 1

such that J1 = J0 = J/2. We then completely randomize the treatment assignment Zij

so that 60% (40%) of the units assigned to treatment if Aj = 1 (Aj = 0). For population
parameters, we fix the average cluster specific effect ✓ = 1 as well as the total variance
�2
b + �2

w = 1. We use four different levels of intraclass correlation, i.e., (0, 0.2, 0.4, 0.6),
which is defined as ⇢ = �2

b/(�
2
b + �2

w).
Figure A1 shows the coverage rates of the confidence intervals for the CADEs calcu-

lated by averaging over 1,000 Monte Carlo simulations (the top and bottom rows present
the coverage rates for the CADE(1) and CADE(0), respectively). When the number of
clusters is relatively large (i.e., (n = 10, J = 250) and (n = 50, J = 50)), our variance
estimator leads to the coverage rates closest to the nominal rate of 95%. However, when
the number of cluster is small but the cluster size is large (n = 250, J = 10), all the four
variance estimators have a tendency to undercover the true value especially when the intra-
cluster correlation is large. Across all scenarios, the confidence intervals based on the HC2
variance tend to perform poorly.
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Figure A2: Coverage rates of 95% confidence intervals when there is no spillover effect of
the treatment assignment on the treatment receipt. See the caption of Figure A1 for details.

D.2 No Spillover Effect of Treatment Assignment on the Treatment
Receipt

We next consider the setting with no spillover effect of treatment assignment on the treat-
ment receipt. In this scenario, Assumptions 1–5 are satisfied and Assumption 6 is violated.
Since the potential values of treatment receipt depend only on one’s own treatment assign-
ment, the complier status does not depend on the treatment assignment mechanism, i.e.,
C⇤

ij(1) = C⇤
ij(0) = C⇤

ij . We sample C⇤
ij from a categorical distribution with probabilities

(0.2, 0.6, 0.2), and compute the potential values of Yij as,

Yij(Dij = 0,D�i,j = d�i,j)
indep.⇠ N

 
�

n

nX

i=1

dij, 1

!
, ✓j

i.i.d.⇠ N(✓, �2
b ),

Yij(Dij = 1,D�i,j = d�i,j)� Yij(Dij = 0,D�i,j = d�i,j)
indep.⇠ N(✓j, �

2
w).

Thus, the potential values of the outcome depend on the number of treated units in the
cluster. We then generate the treatment assignment and its mechanism in the same way as
done in Section D.1 while setting ✓ = 1 and � = 1. Figure A2 shows the coverage rates
of the confidence intervals for the CADEs in the same way as in Figure A1. The results
are similar to those under the setting with no spillover effect of the treatment receipt on the
outcome shown in Figure A1.
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Figure A3: Coverage rates of 95% confidence intervals in the presence of two spillover
effects. See the caption of Figure A1 for details.

D.3 Presence of Two Spillover Effects
Finally, we consider the setting with both types of spillover effects by combining the data
generating mechanisms used above. We keep the data generating mechanism of the poten-
tial values of the treatment receipt introduced in Section D.1, while generating the outcome
according to the data generating mechanism of Section D.2. Thus, this setting permits the
presence of two spillover effects: the spillover effect of treatment receipt on the outcome
and the spillover effect of treatment assignment on the treatment receipt. In this scenario,
Assumptions 1–4 are satisfied and Assumptions 5 and 6 are violated. Figure A3 shows
the coverage of the 95% confidence intervals for the CADEs. Again, the results are quite
similar to those obtained under the other two scenarios.

D.4 Zero-Inflated Outcome
Because the outcome variable (annual hospital expenditure) in our application data has
many zeros (20.7%) and is skewed, we consider a simulation study with a zero-inflated
outcome variable. In particular, we maintain the core data generating mechanisms used in
Sections D.1–D.3, and replace the distribution of the outcome variable with a mixture of
the point mass at zero and a truncated normal distribution. For example, for the simulation
setup used in Section D.1, we generate the outcome variable as,

U
i.i.d.⇠ Bernoulli(p),

Yij(Dij = 1)� Yij(Dij = 0)
i.i.d.⇠ (1� U) · TruncN(✓j, �

2
w, (0,+1)),
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Figure A4: Coverage rates of 95% confidence intervals when there is no spillover effect o
the treatment receipt on the outcome. See the caption of Figure A1 for details.

where TruncN(✓j, �2
w, (0,+1)) is a normal distribution with mean ✓j and variance �2

w

truncated from below at zero. We choose p = 0.2 to emulate our application data.
Figure A4 shows the coverage rates of the confidence intervals for the CADEs when the

treatment receipt has no spillover effect on the outcome. The top and bottom rows present
the coverage rates for the CADE(1) and CADE(0), respectively. The result is similar to
that of the simulation in Section D.1. When the number of clusters is relatively large (i.e.,
(n = 10, J = 250) and (n = 50, J = 50)), our variance estimator leads to the coverage
rates closest to the nominal rate of 95%. However, when the number of cluster is small but
the cluster size is large (n = 250, J = 10), all the four variance estimators have a tendency
to undercover the true value especially when the intracluster correlation is large.

Figure A5 presents the coverage of the 95% confidence intervals for the CADEs when
there is no spillover effect of treatment assignment on the treatment receipt. Figure A6
shows the coverage of the 95% confidence intervals for the CADEs in the presence of
two spillover effects. The results are similar to those with the corresponding cases of the
normally distributed outcomes (see Sections D.2 and D.3).

E Model-Based Analysis
In the main text, we focus on the nonparametric identification of the ITT causal effects and
complier causal effects and establish the connection between the randomization-based esti-
mators and the regression-based estimators. Although the model-free identification results
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Figure A5: Coverage rates of 95% confidence intervals when there is no spillover effect of
treatment assignment on the treatment receipt. See the caption of Figure A1 for details.

are appealing, they are limited by the experimental design and may not directly estimate the
causal quantities that are of interest to applied researchers and policy makers. In this sec-
tion, we consider a model-based analysis to overcome the limitations of our nonparametric
approach. In the following, we assume linear models for the sake of illustration but other
modeling assumptions are possible. We note that the model-based analysis is based on the
super population framework, which is different from the finite population framework used
for our nonparametric analysis.

E.1 Intention-to-Treat Analysis
We first consider the model-based ITT analysis. We model the potential outcome as a linear
function of one’s own encouragement, the proportion of encouraged households within the
same village, and their interaction.

Yij(Zj = zj) = ↵0 + ↵1zij + ↵2 ·
Pnj

j=1 zij
nj

+ ↵3zij ·
Pnj

j=1 zij
nj

+ ◆ij, (A15)

where ◆ij is the error term.
This model is applicable under two-stage randomized experiments with more than two

treatment assignment mechanisms. In addition, the model can be used to extrapolate the
average direct and spillover effects under different treatment assignment mechanisms. For
example, under the scenario that all other households within the same cluster are assigned
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Figure A6: Coverage rates of 95% confidence intervals in the presence of two spillover
effects. See the caption of Figure A1 for details.

to the treatment condition, the average direct effect is given by,

E{Yij(Zij = 1,Z�i,j = 1)� Yij(Zij = 0,Z�i,j = 1)} ⇡ ↵1 + ↵3.

where the approximation results from an additional term ↵2/nj , which is negligible so
long as nj is large. If, on the other hand, all other households within the same cluster are
assigned to the treatment condition, the average direct effect is equal to,

E{Yij(Zij = 1,Z�i,j = 0)� Yij(Zij = 0,Z�i,j = 0)} ⇡ ↵1.

Similarly, the average spillover effect of assigning all other households in the same clus-
ter to the treatment condition (versus no household assigned to the treatment condition)
depends on one’s own encouragement status and is given by,

E{Yij(Zij = 1,Z�i,j = 1)� Yij(Zij = 1,Z�i,j = 0)} ⇡ ↵2 + ↵3,

E{Yij(Zij = 0,Z�i,j = 1)� Yij(Zij = 0,Z�i,j = 0)} ⇡ ↵2.

We apply this model-based approach to our application data. Table A1 shows the re-
sults. Although not statistically significant, the estimated average direct effect when all
other households are assigned to the treatment condition (↵1 + ↵3) is negative whereas
the estimated average direct effect when all other households are assigned to the control
condition (↵1) is positive. The spillover effects are generally negative especially when a
household is encouraged to enroll in the RSBY. These results are similar to those from the
randomization-based approach.
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Direct effects Spillover effects
↵1 + ↵3 ↵1 ↵2 + ↵3 ↵2

�1253 1477 �2881 �180
(�2646, 139) (�94, 2988) (�4631,�1131) (�1991, 1630)

Table A1: Estimated average direct and spillover effects under Model (A15). The first
(second) column presents the estimated average direct effect when all other households
within the same cluster are assigned to the treatment (control) condition. The third (fourth)
column shows the estimated average spillover effect of all other households within the
same cluster are assigned to the treatment condition versus no households are assigned to
the treatment condition when the household itself is assigned to the treatment (control)
condition. The confidence intervals are based on cluster-robust HC2 standard errors.

E.2 Complier Average Direct Effect of Treatment Receipt
Next, we consider a model-based approach to the estimation of the complier average direct
effect (CADE). In the standard settings without interference between units, the complier
average causal effect represents the average causal effect of one’s own treatment receipt on
the outcome among compliers (Angrist et al., 1996). This interpretation is still applicable
to our settings if there exists no spillover effect of encouragement on treatment receipt or
no spillover effect of treatment receipt on outcome (i.e., Scenarios I and II of Figure 1).
However, when both types of spillover effects exist (i.e., Scenario III of the figure), the
CADE represents the indirect effect of one’s own encouragement on the outcome through
the treatment receipt of other units in the same village as well as the direct effect of one’s
own treatment receipt on the outcome. Unfortunately, without an additional assumption,
we cannot identify the latter in the presence of these two spillover effects.

Here, we address this issue by assuming the following parametric structure for the
spillover effects,

Yij(Dj = dj) = �0 + �1dij + �2 ·
Pnj

j=1 dij
nj

+ �3dij ·
Pnj

j=1 dij
nj

+ Uij, (A16)

where Uij represents the latent confounders between the treatment receipt and the outcome.
Model (A16) posits the potential outcome as a linear function of one’s own treatment re-
ceipt and the proportion of households in the same cluster who received the treatment.

Under this model, the average direct effect of one’s own treatment receipt on the out-
come when all the other households within the same cluster receive the treatment is given
by,

E{Yij(Dij = 1,D�i,j = 1)� Yij(Dij = 0,D�i,j = 1)} ⇡ �1 + �3.

Similarly, the average direct effect of one’s own treatment receipt when all the other house-
holds receive the control condition is,

E{Yij(Dij = 1,D�i,j = 0)� Yij(Dij = 0,D�i,j = 0)} ⇡ �1.

Similarly, the average spillover effects of assigning all households to the treatment con-
dition (versus no households assigned to the treatment condition) depends on one’s own
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Direct effects Spillover effects
�1 + �3 �1 �2 + �3 �2

�6013 8724 �11715 3022
(�11872,�154) (407, 17041) (�19445,�3985) (�4927, 10970)

Table A2: Estimated direct and spillover effects of the treatment receipt under
Model (A16). The first (second) column presents the average direct effect of one’s own
treatment receipt when all other households within the same cluster receive the treatment
(control) condition. The third (fourth) column shows the average spillover effect of all other
households within the same cluster receive the treatment condition versus no households
receive the treatment condition when the household itself receives the treatment (control)
condition. The confidence intervals are based on cluster-robust HC2 standard errors.

treatment assignment status and is given by,

E{Yij(Dij = 1,D�i,j = 1)� Yij(Dij = 1,D�i,j = 0)} ⇡ �2 + �3,

E{Yij(Dij = 0,D�i,j = 1)� Yij(Dij = 0,D�i,j = 0)} ⇡ �2.

The following theorem establishes the identification of these effects under Model (A16).

THEOREM A5 Suppose Model (A16) is correctly specified and Assumption 1 holds. Then,

the coefficients of the model are identified by solving the following estimating equations

JX

i=1

njX

j=1

�
Yij � (�0 + �1Dij + �2Dj + �3DijDj)

 
Hij = 04,

where Hij = (1, Zij, Aj, ZijAj)>.

We fit this model to our application data. Table A2 shows the results. The estimated
average direct effect of enrollment in the RSBY receipt when all other households are
also enrolled (�1 + �3) is negative while the estimated average direct effect when all other
households are not enrolled (�1) is positive. This finding is similar to the one obtained
under our nonparametric approach.
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