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Abstract: Matching methods improve the validity of causal inference by reducing model dependence and offering intuitive
diagnostics. Although they have become a part of the standard tool kit across disciplines, matching methods are rarely
used when analysing time-series cross-sectional data. We fill this methodological gap. In the proposed approach, we first
match each treated observation with control observations from other units in the same time period that have an identi-
cal treatment history up to the prespecified number of lags. We use standard matching and weighting methods to further
refine this matched set so that the treated and matched control observations have similar covariate values. Assessing the
quality of matches is done by examining covariate balance. Finally, we estimate both short-term and long-term aver-
age treatment effects using the difference-in-differences estimator, accounting for a time trend. We illustrate the proposed
methodology through simulation and empirical studies. An open-source software package is available for implementing the
proposed methods.

Verification Materials: The data and materials required to verify the computational reproducibility of the results, proce-
dures and analyses in this article are available on the American Journal of Political Science Dataverse within the Harvard
Dataverse Network, at: https://doi.org/10.7910/DVN/ZTDHVE.

One common and effective strategy to estimat-
ing causal effects in observational studies is
the comparison of treated and control observa-

tions who share similar observed characteristics. Match-
ing methods facilitate such comparison by selecting a set
of control observations that resemble each treated ob-
servation and offering intuitive diagnostics for assessing
the quality of resulting matches (e.g. Rubin 2006; Stuart
2010). By making the treatment variable independent of
observed confounders, these methods reduce model de-
pendence and improve the validity of causal inference in
observational studies (e.g. Ho et al. 2007).

Despite their popularity, matching methods have
been rarely used for the analysis of time-series cross-

section (TSCS) data, which consist of a relatively large
number of repeated measurements on the same units.
In such data, each unit may receive the treatment mul-
tiple times and the timing of treatment administration
may differ across units. Perhaps, due to this compli-
cation, we find few applications of matching methods
to TSCS data, and an overwhelming number of social
scientists use linear regression models with fixed ef-
fects (e.g. Angrist and Pischke 2009). Unfortunately,
these regression models heavily rely on parametric
assumptions, offer few diagnostic tools and make it
difficult to intuitively understand how counterfactual
outcomes are estimated (Imai and Kim 2019, 2021).
Moreover, almost all of the existing matching methods
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assume a cross-sectional data set (e.g. Abadie and Im-
bens 2011; Diamond and Sekhon 2013; Hansen 2004;
Iacus et al. 2011; Rosenbaum et al. 2007; Zubizarreta
2012).1

We fill this methodological gap by developing
matching methods for TSCS data. In the proposed ap-
proach, for each treated observation, we first select a
set of control observations from other units in the same
time period that have an identical treatment history for a
prespecified time span. We further refine this matched
set by using standard matching or weighting methods
so that matched control observations become similar
to the treated observation in terms of covariate histo-
ries. After this refinement step, we apply a difference-
in-differences (DiD) estimator that adjusts for a possi-
ble time trend. The proposed method can be used to
estimate both short-term and long-term average treat-
ment effect of policy change for the treated (ATT)
and allows for simple diagnostics through the examina-
tion of covariate balance. Finally, we establish the for-
mal connection between the proposed matching estima-
tor and the linear regression estimator with unit and
time fixed effects. All together, the proposed methodol-
ogy provides a design-based approach to causal infer-
ence with TSCS data.2 The proposed matching meth-
ods can be implemented via the open-source statistical
software in R language, PanelMatch: Matching Methods
for Causal Inference with Time-Series Cross-Sectional
Data, available at https://CRAN.R-project.org/package=
PanelMatch.

We conduct a simulation study, to evaluate the finite
sample performance of the proposed matching method-
ology relative to the standard linear regression estima-
tor with unit and time fixed effects. We show that the
proposed matching estimators are more robust to model
misspecification than this standard two-way fixed effects
regression estimator. The latter is generally more efficient
but suffers from a substantial bias unless the model is
correctly specified. In contrast, our methodology yields
estimates that are stable across simulation scenarios con-
sidered here. We also find that our asymptotic confidence
interval has a reasonable coverage.

Our work builds upon the growing methodologi-
cal literature on causal inference with TSCS data. In an
influential work, Abadie et al. (2010) propose the syn-
thetic control method, which constructs a weighted aver-

1An exception is an unpublished paper by Nielsen and Sheffield
(2009). Their matching method is substantially different from
our methodology.

2In epidemiology, such an approach is called trial emulation as it
attempts to emulate a randomized experiment in an observational
study (Hernán and Robins 2016).

age of pretreatment outcomes among control units such
that it approximates the observed pretreatment outcome
of the treated unit. A major limitation of this approach
is the requirement that only one unit receives the treat-
ment. Even when multiple treated units are allowed, they
are assumed to receive the treatment at a single point in
time (see also Ben-Michael et al. 2019a; Doudchenko and
Imbens 2017). In addition, the synthetic control method
and its extensions require a long pretreatment time pe-
riod for good empirical performance.

Recently, a number of researchers have extended the
synthetic control method. For example, Xu (2017) pro-
poses a generalized synthetic control method based on
the framework of linear models with interactive fixed
effects. This method, however, still requires a relatively
large number of control units that do not receive the
treatment at all. Furthermore, although the possibility
of some units receiving the treatment at multiple time
periods is noted (see footnote 7), the author assumes
that the treatment status never reverses. Indeed, such
‘staggered adoption’ assumption is common even among
the recently proposed extensions of the synthetic control
method (e.g. Ben-Michael et al. 2019b). In contrast, our
methods allow multiple units to be treated at any point
in time, and units can switch their treatment status mul-
tiple times over time. Moreover, the proposed methodol-
ogy can be used to estimate causal effects using a panel
data with a relatively small number of time periods.

Another relevant methodological literature is the
model-based approaches such as the structural nested
mean models (Robins 1994) and marginal structural
models (Robins et al. 2000). These models focus on es-
timating the causal effect of treatment sequence while
avoiding posttreatment bias (as future treatments may
be caused by past treatments) (see Blackwell and Glynn
2018, for an introduction). These approaches, however,
require the modelling of potentially complex conditional
expectation functions and propensity score for each time
period, which can be challenging for TSCS data that
have a large number of time periods (e.g. Imai and
Ratkovic 2015). Our proposed method can incorpo-
rate these model-based approaches within the matching
framework, permitting more robust confounding adjust-
ment when estimating short-term and long-term treat-
ment effects.

Motivating Applications

This section introduces two influential studies that moti-
vate our methodology. The first study is Acemoglu et al.
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(2019), which examines the causal effect of democracy
on economic development. Our second application is
Scheve and Stasavage (2012), which investigates whether
war mobilization leads countries to introduce significant
taxation of inherited wealth. Both studies use linear re-
gression models with fixed effects to estimate the causal
effects of interest. After briefly describing the original
analysis for each study, we visualize the variation of treat-
ment across time and space for each data set and motivate
the proposed methodology, which exploits this variation.

Democracy and Economic Growth

Scholars have long debated whether democracy pro-
motes economic development. Acemoglu et al. (2019)
conduct an up-to-date and comprehensive empirical
study to investigate this question. The authors analyse an
unbalanced TSCS data set, which consists of a total of 184
countries over a half century from 1960 to 2010.

The main results presented in the original study are
based on the following dynamic linear regression model
with country and year fixed effects,

Yit = αi + γt + βXit +
4∑

�=1

{
ρ�Yi,t−� + ζ�

� Zi,t−�

} + εit (1)

for i = 1, . . . , N and t = 5, . . . , T (the notation as-
sumes a balanced panel for simplicity), where Yit is
logged real GDP per capita, and Xit represents the
democracy indicator variable that equals 1 if country i in
year t receives both a ‘Free’ or ‘Partially Free in Freedom
House and a positive score in the Polity IV index, and 0
otherwise. The model also includes four lagged outcome
variables, Yi,t−� for � = 1, . . . , 4, as well as a set of time-
varying covariates Zit and their lagged values. For the ba-
sic model specification, Zit includes the log population,
the log population below 16 years old, the log population
above 64 years old, net financial flow as a fraction of GDP,
trade volume as a fraction of GDP and a binary measure
of social unrest.3 The choice of four lags is particularly
important, specifying how far back in time one needs to
consider when adjusting for confounding factors.

The authors assume the following standard sequen-
tial exogeneity,

E(εit | Yi,t−1,Yi,t−2, . . . ,Yi1, Xit , Xi,t−1, . . . , Xi1,

Zit , Zi,t−1, . . . , Zi1, αi, γt ) = 0, (2)

which implies that the error term is independent of past
outcomes, current and past treatments and covariates. It

3In the original study, the authors include one covariate at a time
rather than including them all together.

is well known that the ordinary least squares (OLS) esti-
mate of β has an asymptotic bias of order 1/T (Nickell
1981). To address this problem, Acemoglu et al. also fit
the model in Equation (1) using the generalized method
of moments (GMM) estimation (Arellano and Bond
1991) with the following moment conditions implied by
Equation (2),

E{(εit − εi,t−1)Yis} = E{(εit − εi,t−1)Xi,s+1} = 0 (3)

for all s ≤ t − 2. The error terms are assumed to
be serially uncorrelated, and the authors use the
heteroskedasticity-robust standard errors.

Table 1 presents the estimates of the coefficients of
this model given in Equation (1). Following the orig-
inal paper, the estimated coefficients and standard er-
rors are multiplied by 100 for the ease of interpreta-
tion. The results in the first two columns are based
on the model without the time-varying covariates Z
whereas the next two columns are those from the model
with the covariates. For each model, we use both OLS
(columns (1) and (3)) and GMM (columns (2) and (4))
estimation as explained above. As shown in the origi-
nal study, the effect of democracy on logged GDP per
capita is positive and statistically significant across all
four models. Based on this finding, the authors conclude
that in the year of democratization the GDP per capita
increases more than 0.5%, a substantial effect given that
democratization may have a long-term effect on eco-
nomic growth.

War and Taxation

As a central element of redistributive policies, in-
heritance taxation plays an essential role in wealth
accumulation and income inequality. Scheve and Stasav-
age (2012) is among the first to empirically investigate
this normatively controversial subject by examining the
political conditions that underpin progressive inheri-
tance taxation. The study documents that participation
in interstate war propels countries to increase inheri-
tance taxation.

Scheve and Stasavage analyse an unbalanced TSCS
data set of 19 countries repeated over 185 years, from
1816 to 2000. The treatment variable of interest Xit is
binary, indicating whether country i experiences an in-
terstate war in year t , whereas the outcome variable Yit

represents top rate of inheritance taxation for country i
in year t . The study measures the outcome variable for
each country in a given year using the top marginal rate
for a direct descendant who inherits an estate. Although
the authors of the original study aggregate the data into
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TABLE 1 Regression Results from the Two Motivating Empirical Applications

Democracy and Growth (Acemoglu et al. 2019) War and Taxation (Scheve and Stasavage 2012)

(1) (2) (3) (4) (5) (6) (7) (8)

ATE (β̂) 0.787 0.875 0.666 0.917 6.775 1.737 5.532 1.539
(0.230) (0.374) (0.306) (0.461) (2.392) (0.729) (2.091) (0.753)

ρ̂1 1.238 1.204 1.098 1.046 0.909 0.904
(0.038) (0.041) (0.042) (0.043) (0.014) (0.014)

ρ̂2 −0.207 −0.193 −0.133 −0.121
(0.046) (0.045) (0.040) (0.038)

ρ̂3 −0.026 −0.028 0.005 0.014
(0.029) (0.028) (0.030) (0.029)

ρ̂4 −0.043 −0.036 −0.031 −0.018
(0.018) (0.020) (0.024) (0.023)

Country FE Yes Yes Yes Yes Yes No Yes No

Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Time trends No No No No Yes Yes Yes Yes

Covariates No No Yes Yes No No Yes Yes

Estimation OLS GMM OLS GMM OLS OLS OLS OLS

N 6,336 6,161 4,416 4,245 2,780 2,779 2,537 2,536

Note: The estimated coefficients for the treatment variable and lagged outcome variables are presented with standard errors in parentheses.
For the Acemoglu et al. study, we show four models based on Equation (1) using OLS or GMM estimation and with or without covariates.
The estimated coefficients and standard errors are multiplied by 100 for the ease of interpretation. For the Scheve and Stasavage study,
we show two statistic models based on Equation (4) and the dynamic models defined in Equation (6), with or without covariates. The
standard errors are in parentheses. For the Acemoglu et al. study, we use the heteroskedasticity-robust standard errors. For the Scheve and
Stasavage study, we cluster standard errors by countries for the static models whereas the panel corrected standard errors are used for the
dynamic models.

5-year or decade intervals, we analyse the annual data to
avoid any aggregation bias.

The authors fit the following static linear regression
model with country and time fixed effects as well as
country-specific linear time trends,

Yit = αi + γt + βXi,t−1 + δ�Zi,t−1 + λit + εit , (4)

where Zit represents a set of the time-varying covariates,
including an indicator variable for a leftist executive, a bi-
nary variable for the universal male suffrage and logged
real GDP per capita. The authors use the lagged values
of the treatment variable and time-varying covariates in
order to avoid the issue of simultaneity. However, unlike
the Acemoglu et al. study, they exclude lagged outcome
variables and only include one period lag of time-varying

confounders. The OLS estimation is used for fitting the
model, requiring the following strict exogeneity assump-
tion,

E(εit | Xi, Zi, αi, γt , λi ) = 0, (5)

where Xi = (Xi1, Xi2, . . . , XiT ) and Zi = (Z�
i1, Z�

i2, . . . ,

Z�
iT )�. The authors use the cluster-robust standard er-

ror to account for the auto-correlation within each
country.

Recognizing the limitation of such static models
and yet wishing to avoid the bias of dynamic mod-
els mentioned above, Scheve and Stasavage also fit the
following model with the lagged outcome variable and
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country-specific time trends but without country fixed
effects,

Yit = γt + βXi,t−1 + ρYi,t−1 + δ�Zi,t−1 + λit + εit , (6)

where the strict exogeneity assumption is now given by,

E(εit | Xi, Zi,Yi,t−1, γt , λi ) = 0. (7)

The OLS estimation is employed for model fitting
whereas panel-corrected standard errors are used to ac-
count for correlation across countries within a time pe-
riod (Beck and Katz 1995).

The last four columns of Table 1 present the re-
sults. Columns (5) and (7) report the results obtained
using the static model given in Equation (4) without and
with the time-varying covariates, respectively. Similarly,
columns (6) and (8) are based on the dynamic model
specified in Equation (6) without and with the time-
varying covariates, respectively. These results show that
war has a positive estimated effect of several percent-
age points on inheritance taxation although the magni-
tude for contemporaneous effect in dynamic models is
much smaller.

The Treatment Variation Plot

A variety of linear regression models with fixed ef-
fects used in these studies represent the most com-
mon methodological approaches to causal inference with
TSCS data. However, a major drawback of these models
is that it is difficult to understand how they use observed
data to estimate relevant counterfactual quantities (Imai
and Kim 2019, 2021).

We introduce the treatment variation plot, which vi-
sualizes the variation of treatment across space and time,
in order to help researchers build an intuition about how
comparison of treated and control observation can be
made. In the left panel of Figure 1, we present the distri-
bution of the treatment variable for the Acemoglu et al.
study where a red (blue) rectangle represents a treated
(control) country-year observation. White areas indicate
the years when countries did not exist. We observe that
many countries stayed either democratic or autocratic
throughout years with no regime change. Among those
that experienced a regime change, most have transitioned
from autocracy to democracy, but some of them have

FIGURE 1 Treatment Variation Plots for Visualizing the Distribution of Treatment across
Space and Time

Note: The left panel displays the spatial-temporal distribution of treatment for the study of democracy’s effect on economic devel-
opment (Acemoglu et al. 2019), in which a red (blue) rectangle represents a treatment (control) country-year observation. A white
area represents the years when a country did not exist. The right panel displays the treatment variation plot for the study of war’s
effect on inheritance taxation (Scheve and Stasavage 2012)
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gone back and forth multiple times. When ascertaining
the causal effects of democratization, therefore, we may
consider the effect of a transition from democracy to
autocracy as well as that of a transition from autocracy
to democracy.

The treatment variation plot suggests that re-
searchers can make a variety of comparisons between
the treated and control observations. For example, we
can compare the treated and control observations within
the same country over time, following the idea of re-
gression models with unit fixed effects (Imai and Kim
2019). With such an identification strategy, it is impor-
tant not to compare the observations far from each other
to keep the comparison credible. We also need to be care-
ful about potential carryover effects where democratiza-
tion may have a long-term effect, introducing posttreat-
ment bias. Alternatively, researchers can conduct com-
parison within the same year, which would correspond to
year fixed effects models. In this case, we wish to compare
similar countries with one another for the same year and
yet we may be concerned about unobserved differences
among those countries.

The right panel of Figure 1 shows the treatment vari-
ation plot for the Scheve and Stasavage study, in which a
treated (control) observation represents the time of inter-
state war (peace) indicated by a red (blue) rectangle. We
observe that most of the treated observations are clus-
tered around the time of two world wars. This implies
that although the data set extends from 1816 to 2000,
most observations in earlier and recent years would not
serve as comparable control observations for the treated
country-year observations.4 As a result, it may be diffi-
cult to generalize the estimates obtained from this data
set beyond the two world wars.

In sum, the treatment variation plot is a useful
graphical tool for visualizing the distribution of treat-
ment across time and units. Researchers should pay spe-
cial attention to whether the treatment sufficiently varies
both over time and across units as in the Acemoglu et al.
study or the treatment variation is concentrated in a rela-
tively small subset of the data as in the Scheve and Stasav-
age study. Because the internal and external validity of
causal effect estimation with TSCS data critically rely
upon such variation, the treatment variation plot plays
an essential role when considering the causal identifica-
tion strategies.

4The treatment variation plot is also useful for detecting potential
anomalies in data. For example, the right panel of Figure 1 shows
that Korea is coded to be in war only in 1953 during the course of
the Korean War (1950–1953).

The Proposed Methodology

In this section, we propose a general matching method
for causal inference with TSCS data, which can be sum-
marized as follows. For each treated observation, re-
searchers first find a set of control observations that have
the identical treatment history up to the prespecified
number of periods. We call this group of matched con-
trol observations a matched set. Once a matched set is
selected for each treated observation, we further refine
it by adjusting for observed confounding via standard
matching and weighting techniques so that the treated
and matched control observations have similar covariate
values. Finally, we apply the DiD estimator in order to
account for an underlying time trend. At the end of this
section, we establish the connections to the linear fixed
effects regression estimator and discuss covariate balance
diagnostics and standard errors.

Matching Estimators

Consider a TSCS data set with N units (e.g. countries)
and T time periods (e.g. years). For the sake of notational
simplicity, we assume a balanced TSCS data set where the
data are observed for all N units in each of T time peri-
ods. However, all the methods described below are ap-
plicable to an unbalanced TSCS data set. For each unit
i = 1, 2, . . . , N at time t = 1, 2, . . . , T , we observe the
outcome variable Yit , the binary treatment indicator Xit

and a vector of K time-varying covariates Zit . We assume
that within each time period the causal order is given by
Zit , Xit and Yit . That is, these covariates Zit are realized
before the administration of the treatment in the same
time period Xit , which in turn occurs before the outcome
variable Yit is realized.

Causal Quantity of Interest. The first step of the pro-
posed methodology is to define a causal quantity by
choosing a nonnegative integer F as the number of leads,
which represents the outcome of interest measured at F
time periods after the administration of treatment. For
example, F = 0 represents the contemporaneous effect
whereas F = 2 implies the treatment effect on the out-
come two time periods after the treatment is adminis-
tered. Specifying F > 0 allows researchers to examine a
cumulative (or long-term) effect.

In addition, our methodology requires researchers
to select another nonnegative integer L as the number
of lags to adjust for. Unlike the choice of leads, which
should be primarily driven by researchers’ substantive
interests, selecting the number of lags is part of the
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identification assumption. That is, researchers should
evaluate the extent to which past treatment status could
be a confounder affecting the current outcome as well as
the current treatment (Imai and Kim 2019). As in the re-
gression approach, the choice of L is important and faces
a bias–variance tradeoff. Although a greater value im-
proves the credibility of the unconfoundedness assump-
tion introduced below, it also reduces the efficiency of
the resulting estimates by reducing the number of poten-
tial matches.

We assume the absence of spillover effect but al-
low for some carryover effects (up to L time periods).
That is, the potential outcome for unit i at time t + F
depends neither on the treatment status of other units,
for example, Xi′t ′ with i′ �= i and for any t ′, nor on the
previous treatment status of the same unit after L time
periods, that is, {Xi,t−�}t−1

�=L+1. In many applications, the
assumption of no spillover effect may be too restrictive.
Although the methodological literature has begun to
relax the assumption of no spillover effect in experi-
mental settings (e.g. Aronow and Samii 2017; Hudgens
and Halloran 2008; Imai et al. 2021; Tchetgen Tchetgen
and VanderWeele 2010). We will leave the challenge of
enabling the presence of spillover effects in TSCS data
settings to future research.

Once these two parameters, L and F , are selected, we
can define a causal quantity of interest. We first consider
the average treatment effect of policy change among the
treated (ATT),

δ(F, L) = E
{
Yi,t+F

(
Xit = 1, Xi,t−1 = 0, {Xi,t−�}L

�=2

)
− Yi,t+F

(
Xit = 0, Xi,t−1 = 0, {Xi,t−�}L

�=2

)
| Xit = 1, Xi,t−1 = 0

}
, (8)

where the treated observations are those who experi-
ence the policy change, that is, Xi,t−1 = 0 and Xit = 1. In
our two applications, this quantity represents the aver-
age causal effect of democratization on economic growth
and that of war initiation on inheritance taxation, respec-
tively.

In this definition, Yi,t+F (Xit = 1, Xi,t−1 =
0, {Xi,t−�}L

�=2) is the potential outcome under a policy
change, whereas Yi,t+F (Xit = 0, Xi,t−1 = 0, {Xi,t−�}L

�=2)
represents the potential outcome without the policy
change, that is, Xi,t−1 = Xit = 0. In both cases, the
rest of the treatment history, that is, {Xi,t−�}L

�=2 =
{Xi,t−2, . . . , Xi,t−L}, is set to the realized history. For
example, δ(1, 5) represents the average causal effect of
policy change on the outcome one time period after the
treatment while assuming that the potential outcome

only depends on the treatment history up to five time
periods back.5

This causal quantity allows for a future treatment re-
versal in a sense that the treatment status could go back
to the control condition before the outcome is measured,
that is, Xi,t+� = 0 for some � with 1 ≤ � ≤ F . Later in
this section, we discuss an alternative quantity of inter-
est, which does not permit treatment status reversal, and
define the ATT of stable policy change. This represents
a counterfactual scenario, in which the treatment is in
place at least for F time periods after policy change.

How should researchers choose the values of L and
F ? A large value of L improves the credibility of the
aforementioned limited carryover effect assumption be-
cause it allows a greater number of past treatments (i.e.
those up to time t − L) to affect the outcome of inter-
est (i.e. Yi,t+F ). However, this may reduce the number of
matches and yield less precise estimates. We emphasize
that choosing an appropriate number of lags is as impor-
tant for our methods as for regression models. In prac-
tice, we recommend that researchers choose the number
of lags based on their substantive knowledge and exam-
ine the sensitivity of empirical results to this choice. Sim-
ilarly, the choice of F should be substantively motivated
as it determines whether one is interested in short-term
or long-term causal effects. We note that a large value of
F may make the interpretation of causal effects difficult if
many units switch the treatment status during the F lead
time periods.

Identification Assumption. Given the values of F and L
and the causal quantity of interest, we need an additional
identification assumption. One possibility is to assume
that conditional on the treatment, outcome and covari-
ate history up to time t − L, the treatment assignment is
unconfounded. This assumption is called sequential ig-
norability in the literature (e.g. Robins et al. 2000),{

Yi,t+F

(
Xit = 1, Xi,t−1 = 0, {Xi,t−�}L

�=2

)
,

Yi,t+F

(
Xit = 0, Xi,t−1 = 0, {Xi,t−�}L

�=2

)} ⊥⊥ Xit

| Xi,t−1 = 0, {Xi,t−�}L
�=2, {Yi,t−�}L

�=1, {Zi,t−�}L
�=0, (9)

where Zit is a vector of observed time-varying con-
founders for unit i at time period t . The assumption will
be violated if there exist unobserved confounders. The

5One may be interested in the average treatment effect of policy
reversal among the reversed (ART). This quantity corresponds to
the effects of authoritarian reversal and is defined as,

ξ(F, L) = E
{
Yi,t+F

(
Xit = 0, Xi,t−1 = 1, {Xi,t−�}L

�=2

)
− Yi,t+F

(
Xit = 1, Xi,t−1 = 1, {Xi,t−�}L

�=2

)
| Xit = 0, Xi,t−1 = 1

}
.
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violation also occurs if the treatment, outcome and co-
variate histories before time t − L confound the causal
relationship between Xit and Yi,t+F .

In many practical applications with TSCS data, how-
ever, researchers are concerned about the potential ex-
istence of unobserved confounding variables. Therefore,
instead of the unconfoundedness assumption given in
Equation (9), we adopt the DiD design (e.g. Abadie
2005). Specifically, we make the following parallel trend
assumption after conditioning on the treatment, out-
come and covariate histories,

E
[
Yi,t+F

(
Xit = 0, Xi,t−1 = 0, {Xi,t−�}L

�=2

) − Yi,t−1 | Xit = 1,

Xi,t−1 = 0, {Xi,t−�,Yi,t−�}L
�=2, {Zi,t−�}L

�=0

]
= E

[
Yi,t+F

(
Xit = 0, Xi,t−1 = 0, {Xi,t−�}L

�=2

) − Yi,t−1 | Xit = 0,

Xi,t−1 = 0, {Xi,t−�,Yi,t−�}L
�=2, {Zi,t−�}L

�=0

]
, (10)

where the conditioning set includes the treatment his-
tory, the lagged outcomes (except the immediate lag
Yi,t−1) and the covariate history. It is well known that
this parallel trend assumption cannot account for un-
observed time-varying confounders. As such, it is im-
portant to examine whether the outcome time trends
are indeed parallel on average between the treated and
matched control units, using the data from the pretreat-
ment periods.

Constructing the Matched Sets. The next step of the
proposed methodology is to construct, for each treated
observation (i, t ), the matched set of control units that
share the identical treatment history from time t − L to
t − 1. We choose to match exactly on the treatment his-
tory because this allows us to partially control for car-
ryover effects. We also believe that in many cases past
treatments are among the most important confounders
as they are likely to affect both the current treatment and
outcome. It is also important to note that the matched
sets only include observations from the same time pe-
riod, implying exact matching on time period. We do
this in order to adjust for time-specific unobserved con-
founders. Partially relaxing these matching restrictions is
straightforward. For example, we can match each treated
observation with control observations that have a sim-
ilar treatment history, where the degree of similarity is
defined by researchers. The consequences of such relax-
ation needs to be carefully investigated in future research.

Figure 2 illustrates how the matched sets, with the
identical treatment history with the treated observations,
are constructed when L = 3. For example, in the left
panel (the ATT), the control observations (i, t ) = (2, 4)
and (4,4) (red triangles) are matched to the treated obser-
vation (1,4) (red circle) as they share the identical treat-
ment history at t = 1, 2, 3 (red rectangles). The right
panel, on the other hand, shows the matched set for the
ART (see footnote 5) where the treated observation (red

FIGURE 2 An Example of Matched Sets with Five Units and Six Time Periods

Note: Panels (a) and (b) illustrate how matched sets are chosen for the ATT (as defined in Equation (11))
and the ART (see footnote 5), respectively, when L = 3. For each treated observation (coloured circles), we
select a set of control observations from other units in the same time period (triangles with the same colour)
that have an identical treatment history (rectangles with the same colour)
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triangle) is matched to the control observation (red cir-
cle). Another control observation highlighted by a blue
circle has an empty matched set because no treated ob-
servation shares the same treatment history. We exclude
these observations from the subsequent analysis to pre-
serve the internal validity. It is important for researchers
to examine the characteristics of these removed observa-
tions as this modifies the target population.

Formally, the matched set is defined as,

Mit = {i′ : i′ �= i, Xi′t = 0, Xi′t ′ = Xit ′

for all t ′ = t − 1, . . . , t − L} (11)

for the treated observations with Xit = 1 and Xi,t−1 = 0.
For the ART, we define the matched set as Mit = {i′ :
i′ �= i, Xi′t = 1, Xi′t ′ = Xit ′ for all t ′ = t − 1, . . . , t − L}.
The observations in this set are matched to the control
observations with Xit = 0 and Xi,t−1 = 1.

Finally, we note that unlike the existing methods
for staggered adoption, units are allowed to switch their
treatment status multiple times over time. This matched
set also differs from the risk set of Li et al. (2001). The
latter only includes units who have not received the treat-
ment in the previous time periods. Instead, we allow for
the possibility of a unit receiving the treatment multiple
times, which is common in many TSCS data sets.

Refining the Matched Sets. The matched sets, defined
above in Equation (11), only adjust for the treatment
history. However, the parallel trend assumption, de-
fined in Equation (10), demands that we also adjust for
other confounders such as past outcomes and (possibly
time-varying) covariates. Below, we discuss examples of
matching and weighting methods that make additional
adjustments by further refining the matched sets.

We first consider the application of matching meth-
ods. Suppose that we wish to match each treated obser-
vation with at most J control units from the matched set
with replacement, that is, |Mit | ≤ J . For example, we can
use the Mahalanobis distance measure although other
distance measure can also be used (see, e.g. Rubin 2006;
Stuart 2010). Specifically, we compute the average Ma-
halanobis distance between the treated observation and
each control observation over time,

Sit (i′) = 1

L

L∑
�=1

√
(Vi,t−� − Vi′,t−�)��−1

i,t−�
(Vi,t−� − Vi′,t−�) (12)

for a matched control unit i′ ∈ Mit where Vit ′ represents
the time-varying covariates one wishes to adjust for and
�it ′ is the sample covariance matrix of Vit ′ . That is, given
a matched control unit, we compute the standardized

distance using the time-varying covariates and average it
across time periods.6

Alternatively, we can use the distance measure based
on the estimated propensity score. The propensity score
is defined as the conditional probability of treatment as-
signment given pretreatment covariates (Rosenbaum and
Rubin 1983). To estimate the propensity score, we first
create a subset of the data, consisting of all treated obser-
vations and their matched control observations from the
same year. We then fit a treatment assignment model to
this data set. For example, we may use the logistic regres-
sion model,

eit

({Ui,t−�}L
�=1

) = Pr(Xit = 1 | Ui,t−1, . . . , Ui,t−L )

= 1

1 + exp
(
− ∑L

�=1 β�
�

Ui,t−�

) , (13)

where Uit ′ = (Xit ′, V�
it ′ )�.7 In practice, researchers may

assume a more parsimonious model, in which some el-
ements of β are set to zero. For example, setting β = 0
for � < t − 1 means that the model only includes the
contemporaneous covariates Zit and the previous value
of the treatment variable. In addition, alternative robust
estimation procedures such as the covariate balancing
propensity score (CBPS) of Imai and Ratkovic (2014) can
be used.

Given the fitted model, we compute the estimated
propensity score for all treated observations and their
matched control observations. Then, we adjust for the
lagged covariates by matching on the estimated propen-
sity score, yielding the following distance measure,

Sit (i′) = ∣∣logit
{

êit

({Ui,t−�}L
�=1

)} − logit
{

êi′t
({Ui′,t−�}L

�=1

)}∣∣ (14)

for each matched control observation i′ ∈ Mit , where
êi′t ({Ui,t−�}L

�=1) is the estimated propensity score.
Once the distance measure Sit (i′) is computed for

all control units in the matched set, then we refine the
matched set by selecting up to J most similar control
units that satisfy a caliper constraint C specified by re-
searchers and giving zero weight to the other matched
control units. In this way, we choose a subset of con-
trol units within the original matched set that are most
similar to the treated unit in terms of the observed

6For example, we might use all the observed time-varying covari-
ates by setting Vit ′ = Zi,t ′+1. It is also possible to adjust for the
lagged outcome variable by setting Vit ′ = (Yit ′ , Z�

i,t ′+1)� though
typically researchers prefer to adjust for the differences in the
lagged outcomes through assuming the parallel trend under the
DiD design.

7Note that because we only use the observations contained in the
matched sets, this is equivalent to modelling the conditional prob-
ability of policy change (as opposed to no change).
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confounders. Formally, the refined matched set for the
treated observation (i, t ) is given by,

M∗
it =

{
i′ : i′ ∈ Mit , Sit (i′) < C, Sit (i′) ≤ S(J )

it

}
, (15)

where S(J )
it is the J th-order statistic of Sit (i′) among the

control units in the original matched set Mit .
Instead of matching, we can also use weighting to re-

fine the matched sets. The idea is to construct a weight
for each control unit i′ within a matched set of a given
treated observation (i, t ) where a greater weight is as-
signed to a more similar unit. For example, we can use
the inverse propensity score weighting method (Hirano
et al. 2003), based on the propensity score model given
in Equation (13).8 In this case, the weight for a matched
control unit i′ is defined as,

wi′
it ∝ êi′t

({Ui,t−�}L
�=1

)
1 − êi′t

({Ui,t−�}L
�=1

) (16)

such that
∑

i′∈Mit
wi′

it = 1 and wi′
it = 0 for i′ /∈ Mit . Note

that the model should be fitted to the entire sample of
treated and matched control observations.

The weighting refinement further generalizes the
matching refinement because the latter assigns an equal
weight to each unit in the refined matched set M∗

it ,

wi′
it =

{
1

|M∗
it | if i′ ∈ M∗

it

0 otherwise.
(17)

In addition to propensity score weighting, other weight-
ing methods such as calibration weights can also be used
to refine each matched set.

The Difference-in-Differences Estimator. Given the
refined matched sets, we estimate the ATT of policy
change defined in Equation (8). To do this, for each
treated observation (i, t ), we estimate the counterfactual
outcome Yi,t+F (Xit = 0, Xi,t−1 = 0, Xi,t−2, . . . , Xi,t−L )
using the weighted average of the control units in the
refined matched set. We then compute the DiD estimate
of the ATT for each treated observation and then average
it across all treated observations. Formally, our ATT
estimator is given by,

δ̂(F, L) = 1∑N
i=1

∑T −F
t=L+1 Dit

N∑
i=1

T −F∑
t=L+1

Dit

⎧⎨
⎩(

Yi,t+F − Yi,t−1

) −
∑

i′∈Mit

wi′
it

(
Yi′,t+F − Yi′,t−1

)⎫⎬⎭, (18)

8One can also use calibration weights instead of inverse propensity
score weights.

where Dit = Xit (1 − Xi,t−1) · 1{|Mit | > 0}, and wi′
it rep-

resents the nonnegative normalized weight such that
wi′

it ≥ 0 and
∑

i′∈Mit
wi′

it = 1. Note that Dit = 1 only if
observation (i, t ) changes the treatment status from the
control condition at time t − 1 to the treatment condi-
tion at time t and has at least one matched control unit.

When researchers are interested in a noncontempo-
raneous treatment effect (i.e. F > 0), the ATT defined in
Equation (8) does not specify the future treatment se-
quence. As a result, the matched control units may in-
clude those units who receive the treatment after time t
but before the outcome is measured at time t + F . Simi-
larly, some treated units may return to the control condi-
tions between time t and time t + F . However, in certain
circumstances, researchers may be interested in the ATT
of stable policy change where the counterfactual scenario
is that a treated unit does not receive the treatment be-
fore the outcome is measured. We can modify the ATT
by specifying the future treatment sequence so that the
causal quantity is defined with respect to the counter-
factual scenario of interest. Appendix A on p. 1 further
discusses this alternative quantity of interest.

Checking Covariate Balance

One advantage of the proposed methodology, over
regression methods, is that researchers can examine
the resulting covariate balance between treated and
matched control observations, enabling the investigation
of whether the treated and matched control observations
are comparable with respect to observed confounders.
Under the proposed framework, examination of covari-
ate balance is straightforward once the matched sets are
determined and refined.

We propose to examine the mean difference of each
covariate (e.g. Vit ′ j , which represents the jth variable in
Vit ′) between a treated observation and its matched con-
trol observations at each pretreatment time period, that
is, t ′ < t . We further standardize this difference, at any
given pretreatment time period, by the standard devia-
tion of each covariate across all treated observations in
the data so that the mean difference is measured in terms
of standard deviation units. Formally, for each treated
observation (i, t ) with Dit = 1, we define the covariate
balance for variable j at the pretreatment time period
t − � as,

Bit ( j, �) = Vi,t−�, j − ∑
i′∈Mit

wi′
it Vi′,t−�, j√

1
N1−1

∑N
i′=1

∑T −F
t ′=L+1 Di′t ′ (Vi′,t ′−�, j − V t ′−�, j )2

, (19)

where N1 = ∑N
i′=1

∑T −F
t ′=L+1 Di′t ′ is the total number of

treated observations and V t−�, j = ∑N
i=1 Di,t−�, j/N . We
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then aggregate this covariate balance measure across all
treated observations for each covariate and pretreatment
time period.

B( j, �) = 1

N1

N∑
i=1

T −F∑
t=L+1

Dit Bit ( j, �). (20)

Finally, we emphasize that one must examine the
balance of the lagged outcome variables over multiple
pretreatment periods as well as that of time-varying co-
variates. This helps us evaluate the appropriateness of the
parallel trend assumption used to justify the proposed
DiD estimator.

Relations with Linear Fixed Effects
Regression Estimators

It is well known that the standard DiD estimator is equiv-
alent to the linear two-way fixed effects regression esti-
mator if there are two time periods and the treatment
is administered to some units only in the second time
period. Unfortunately, this equivalence does not gener-
alize to the multiperiod DiD design considered in this
article, in which the number of time periods may ex-
ceed two and each unit may receive the treatment mul-
tiple times (see e.g. Abraham and Sun 2018; Athey and
Imbens 2018; Chaisemartin and D’Haultfœuille 2018;
Goodman-Bacon 2018; Imai and Kim 2011, 2021). Nev-
ertheless, researchers often motivate the use of the two-
way fixed effects estimator by referring to the DiD design
(e.g. Angrist and Pischke 2009). Bertrand et al. (2004),
for example, call the linear regression model with two-
way fixed effects ‘a common generalization of the most
basic DiD setup (with two periods and two groups)’ (p.
251).

The following theorem establish the algebraic equiv-
alence between the proposed matching estimator given
in Equation (18) and weighted two-way fixed effects esti-
mator. Our estimand is the ATT of stable policy change
relative to no policy change as defined in Equation (1), in
which the treatment will be in place at least for F time pe-
riods. This generalizes the result of Imai and Kim (2021).
Specifically, we allow for estimating both short-term and
long-term average treatment effects with nonparametric
covariate adjustment.

Theorem 1 (DiD Estimator as a Weighted Two-way
Fixed Effects Estimator). Assume that there is at least
one treated and control unit, that is, 0 <

∑N
i=1

∑T
t=1 Xit <

NT , and that there is at least one unit with Dit = 1, that is,
0 <

∑N
i=1

∑T
t=1 Dit . The DiD estimator, δ̂(F, L) defined

in Equation (18), is equivalent to β̂DiD where β̂DiD is the

following weighted two-way fixed effects regression estima-
tor,

β̂DiD = argmin
β

N∑
i=1

T∑
t=1

Wit {(Yit − Y
∗
i − Y

∗
t + Y

∗
)

− β(Xit − X
∗
i − X

∗
t + X

∗
)}2. (21)

The asterisks indicate weighted averages, that is,
Y

∗
i = ∑T

t=1 WitYit /
∑T

t=1 Wit , Y
∗
t = ∑N

i=1 WitYit /
∑N

i=1

Wit , X
∗
i = ∑T

t=1 Wit Xit /
∑T

t=1 Wit , X
∗
t = ∑N

i=1 Wit Xit /∑N
i=1 Wit , Y

∗ = ∑N
i=1

∑T
t=1 WitYit /

∑N
i=1

∑T
t=1 Wit ,

X
∗ = ∑N

i=1

∑T
t=1 Wit Xit /

∑N
i=1

∑T
t=1 Wit , and the re-

gression weights are given by,

Wit =
N∑

i′=1

T∑
t ′=1

Di′t ′ · vi′t ′
it and

vi′t ′
it =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if (i, t ) = (i′, t ′ + F )
1 if (i, t ) = (i′, t ′ − 1)
wi

i′t ′ if i ∈ Mi′t ′, t = t ′ + F
−wi

i′t ′ if i ∈ Mi′t ′, t = t ′ − 1
0 otherwise.

(22)

Proof is in Appendix B on p. 1.
Importantly, the regression weight Wit can take a

negative value in many cases, implying that the two-way
fixed effects regression estimator critically relies upon
its parametric assumption. Although many applied re-
searchers motivate the use of two-way fixed effects re-
gression by the DiD design, Theorem 1 shows that such
an argument is invalid unless the modelling assumption
is correct.

Standard Error Calculation

To compute the standard errors of the proposed estima-
tor given in Equation (18), we condition on the weights
implied by the matching procedure, which represents
the number of times an observation is used for match-
ing (Imbens and Rubin 2015). Much like the conditional
variance in regression models, the resulting standard er-
rors do not account for the uncertainty about a match-
ing procedure, but can be interpreted as the uncertainty
measure conditional upon it (Ho et al. 2007). For the
proposed estimator, this observation-specific weight can
be computed as follows,

W ∗
it =

N∑
i′=1

T∑
t ′=1

Di′t ′ · vi′t ′
it and
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vi′t ′
it =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if (i, t ) = (i′, t ′ + F )
−1 if (i, t ) = (i′, t ′ − 1)
−wi

i′t ′ if i ∈ Mi′t ′, t = t ′ + F
wi

i′t ′ if i ∈ Mi′t ′, t = t ′ − 1
0 otherwise,

(23)

which differs from the weight defined in Theorem 1.
Note that δ̂(F, L) defined in Equation (18) can be at-
tained by applying the weights directly to each observa-
tion: δ̂(F, L) = ∑N

i=1

∑T
t=1 W ∗

it Yit /
∑N

i=1

∑T
t=1 Dit .

We consider both conditional and unconditional
standard errors. In both cases, we apply the strat-
egy of matching as nonparametric preprocessing (Ho
et al. 2007) and do not account for the uncertainty
of the matching process. This results in the treatment
of the weight Wit as an observed variable. Define A =∑N

i=1 Ai with Ai = ∑T
t=1 W ∗

it Yit and B = ∑N
i=1 Bi with

Bi = ∑T
t=1 Dit . Then, for the conditional standard error,

under the assumption of independence across units (but
not across time periods), we have

V(δ̂(F, L) | D) = N∗
V(Ai )

B2
,

where N∗ represents the total number of units with at
least one nonzero weight.

For the unconditional standard error, we use the
first-order Taylor approximation for the asymptotic vari-
ance.

V(δ̂(F, L)) = V

(
A

B

)
≈ 1

E(B)2{
V(A) − 2

E(A)

E(B)
Cov(A, B) + E(A)2

E(B)2
V(B)

}
,

where E(A) = N · E(Ai ), V(A) = N · V(Ai )E(B) =
N · E(Bi ), V(B) = N · V(Bi ), Cov(A, B) = N ·
Cov(Ai, Bi ). For unconditional standard error, it is
also possible to apply the block bootstrap procedure
to account for within-unit time dependence. That is,
we sample each unit, which consists of a sequence
of T observations, with replacement, and compute∑N

i′=1

∑T
t=1 W ∗

i′tYi′t /
∑N

i′=1

∑T
t=1 Di′t for the bootstrap

sample units i′ in each iteration. Abadie and Imbens
(2008) show that a standard bootstrap procedure yields
an invalid inference for matching estimators. However,
we circumvent this problem by conditioning on the
weights rather than recompute them for each boot-
strapped sample (see also Otsu and Rai 2017).

A Simulation Study

We conduct simulations to examine the finite sample
properties of the proposed matching estimator by com-
paring its empirical performance with the standard linear
regression models with fixed effects. Specifically, we as-
sess the robustness of the estimators to various degrees of
model misspecification. We choose a simulation setting
that is favourable to OLS by generating the data from a
linear model. We then introduce model misspecification
by gradually omitting the lagged covariates and their in-
teraction terms. This setup is designed to replicate the
common difficulty, faced by applied researchers, of de-
termining the number of lags when analysing TSCS data.

All the details and results of the simulation study are
given in Appendix C on p. 3. Even in this simulation set-
ting favourable to OLS, we find that the proposed match-
ing estimator is much more robust to the omission of rel-
evant lags than the linear regression estimator with fixed
effects. However, this increased robustness of matching
comes at the expense of statistical power. This finding re-
flects a fundamental tradeoff between bias and variance
in statistics. In general, matching estimators tend to have
less bias but also less efficient than regression estimators.

Empirical Analyses

We revisit the two motivating studies described ear-
lier and reanalyse their data by applying the proposed
methodology. We find that the (negative) effect of au-
thoritarian reversal on economic growth is more pro-
nounced than the (positive) effect of democratization,
and that war appears to increase inheritance tax rate but
the effects are not precisely estimated.

Application of Matching Methods

For the Acemoglu et al. study, we estimate the two ef-
fects of democracy on economic growth, the effect of de-
mocratization and that of authoritarian reversal. Because
the treatment variable Xit takes the value of one (zero) if
country i is democratic (autocratic) at year t , the aver-
age effect of democratization for the treated is defined by
Equation (8). The average effect of autocratic reversal for
the treated, on the other hand, is defined as,

E
[
Yi,t+F

(
Xit = 0, Xi,t−1 = 1, {Xi,t−�}L

�=2

)
− Yi,t+F

(
Xit = 1, Xi,t−1 = 1, {Xi,t−�}L

�=2

)
| Xit = 0, Xi,t−1 = 1

]
. (24)



MATCHING METHODS FOR TSCS DATA 599

In addition, one may also be interested in the ATT of sta-
ble policy (regime) change relative to no policy (regime)
change, as defined in Equation (1). We present the co-
variate balance for this alternative quantity of interest in
Appendix D on p. 11.

As shown in the left panel of Figure 1, although most
countries transition from autocracy to democracy, we
also observe enough cases of authoritarian reversal, sug-
gesting that we may have sufficient data to estimate both
effects. In contrast, for the Scheve and Stasavage study,
we focus on the effect of involvement in a war on inher-
itance tax rather than the effect of ending a war because
the latter lacks enough control countries (i.e. countries
still in a war when a treated country ends a war). This
is because most war observations come from two world
wars (see the right panel of Figure 1). Again, we present
the covariate balance in the case of an alternative quantity
of interest in Appendix D on p. 11.

We use the original studies to guide the specifica-
tion of matching methods. In their regression models,
Acemoglu et al. include 4 years of lag for the outcome
and time-varying covariates (see Equation (1)). There-
fore, when estimating the ATTs of democratization and

authoritarian reversal, we also condition on 4 years of
lag, that is, L = 4, and estimate the ATT up to 4 years af-
ter regime change, that is, F = 1, 2, 3, 4. In contrast, the
dynamic model of Scheve and Stasavage adjusts only for
1-year lag of the outcome variable (see Equation (6)). Be-
cause 1-year lag may not be sufficient, we also conduct an
analysis based on 4-year lags when estimating the effect
of war on inheritance tax.

To illustrate the proposed methodology, we begin by
constructing the matched set for each treated observa-
tion based on the treatment history. Figure 3 presents
the frequency distribution for the number of matched
control units given a treated observation in the case
of 1- and 4-year lag as transparent and red bars, re-
spectively. The distribution is presented for the transi-
tion from the control to treatment conditions (left col-
umn) and that from the treatment to control conditions
(right column). As expected, the number of matched
control units generally decreases when we adjust for the
treatment history of 4-year period rather than that of
1-year period.

For the Acemoglu et al. study in the upper
panel, there are nine (five) treated observations for

FIGURE 3 Frequency Distribution of the Number of Matched Control Units

Note: The transparent (red) bar represents the number of matched control units that share the same treatment history as a treated
observation for 1 year (4 years) prior to the treatment year. The frequency distribution is presented for each of the two treatments in
the Acemoglu et al. (2019) study (top panel) and the Scheve and Stasavage (2012) study (bottom panel). Thinner vertical bars at zero
represent the number of treated observations that have no matched control units
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democratization (authoritarian reversal) that have no
control unit with the same treatment history when the
number of lags is four (represented by a thin red verti-
cal bar at zero), whereas no such treated observation ex-
ists for the case of 1-year lag. We have enough matched
control units for both democratization and authoritar-
ian reversal: Most treated observations have more than
30 matched control units.

However, for the Scheve and Stasavage study, most
treated observations have less than five observations
when studying the effect of ending war, suggesting that
causal inference is more challenging in this setting. In
addition, there are also unmatched treated observations.
For starting war as the treatment, there are two treated
observations without any matched control units if we
match on four lags, as represented by a thinner red
vertical bar at zero. For ending war as the treatment,
the use of 4 (1) lags leads to the number of unmatched
treated observations to 18 (17), as represented by a
thinner red (black) vertical bar at zero. Thus, causal
inference is challenging especially when estimating the
effects of ending war. Below, we do not estimate the

effects of ending war because such estimates have low
validity.

To refine the matched sets, we apply Mahalanobis
distance matching, propensity score matching and
propensity score weighting so that we can compare the
performance of each refinement method. For matching,
we apply up-to-five matching and up-to-ten matching
for the Acemoglu et al. study to examine the sensitivity of
empirical findings to the maximum number of matches.
For the Scheve and Stasavage study, we use one-to-one
match and up-to-three matches because the matched sets
are smaller to begin with. Mahalanobis distance is de-
fined in Equation (12), whereas we use the logistic re-
gression model estimated with just identified CBPS for
propensity score matching (Equation (14)) and weight-
ing (Equation (16)).

When specifying the Mahalanobis distance and the
propensity score model, we use all time-varying covari-
ates. For the Acemoglu et al. study, the time-varying co-
variates include the log population, the log population
of age below 16 years, the log population of age above
64 years, net financial flow as a fraction of GDP, trade

FIGURE 4 Improved Covariate Balance Due to Refinement of Matched Sets

Note: Each scatter plot compares the absolute value of standardized mean difference for each covariate j and lag
year � defined in Equation (20) before (horizontal axis) and after (vertical axis) the refinement of matched sets.
Rows represents the results based on different matching and weighting methods whereas the columns represent
the results using the adjustments for different lag lengths
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volume as a fraction of GDP and a dichotomous mea-
sure of social unrest (though the original authors do not
include all variables at once in their regression model).
Similarly, for the Scheve and Stasavage study, we use all
available time-varying covariates, that is, an indicator
variable for leftist executive, a binary variable for the uni-
versal male suffrage and logged GDP per capita.

Figure 4 shows how the refinement of matched
sets improves the covariate balance for the two studies.
In each scatter plot, we compare the absolute value of
standardized mean difference defined in Equation (20)
before (horizontal axis) and after (vertical axis) the
refinement of matched sets. A dot below the 45 degree
line implies that the standardized mean balance is im-
proved after the refinement for a particular time-varying
covariate. Across almost all variables the refinement
results in the improved mean covariate balance. The
amount of improvement is the greatest for propensity
score weighting (bottom row) whereas Mahalanobis
matching (top row) achieves only the modest degree of
improvement.

Figure 5 further illustrates the improvement of co-
variate balance due to matching over the pretreatment
time period. We focus on the results for matching meth-
ods that adjust for time-varying covariates during the
4-year period prior to the administration of treatment.
The top two rows present the standardized mean covari-
ate balance for the two treatments of the Acemoglu et al.
study whereas the bottom row shows that for the treat-
ment of starting war in the Scheve and Stasavage study.
The solid line represents the balance of the lagged out-
come whereas grey lines show the balance of other co-
variates.

In all three cases, we find that the construction of
matched sets (i.e. the adjustment of treatment history
alone) do not dramatically improve the covariate bal-
ance. In contrast, the improvement due to the refinement
of matched sets is substantial. In particular, propensity
score weighting essentially eliminates almost all imbal-
ance in confounders. Although some degree of imbal-
ance remains for Mahalanobis distance and propensity
score matching, the standardized mean difference for the

FIGURE 5 Improved Covariate Balance Due to Matching over the Pre-Treatment Time Period

Note: Each plot plots the standardized mean difference defined in Equation (20) (vertical axis) over the pretreatment time period
of 4 years (horizontal axis). The left column shows the balance before matching, whereas the next column shows that before refine-
ment but after the construction of matched sets. The remaining three columns present the covariate balance after applying different
refinement methods. The solid line represents the balance of the lagged outcome variable whereas the grey lines represent that of
time-varying covariates
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lagged outcome stays relatively constant over the entire
pretreatment period. This suggests that the assumption
of parallel trend for the proposed DiD estimator may
be appropriate.

Empirical Findings

We now present the estimated ATTs based on the match-
ing methods. Figure 6 shows the matching estimates of
the effects of democratization (upper panel) and author-
itarian reversal (lower panel) on logged GDP per capita
for the period of 5 years after the transition, that is,
F = 0, 1, . . . , 4. Across all five methods (columns), we
find that the point estimates of the effects for democra-
tization are mostly close to zero over the 5-year time pe-
riod. On the other hand, the estimated effects of author-
itarian reversal are negative and statistically significant
across all refinement methods during the year of transi-
tion and the 1 to 4 years immediately after the transition
when the treatment reversal is allowed. The estimated ef-
fects are substantively large, indicating an approximately
5% to 8% reduction of GDP per capita. Although the

confidence interval is wide, this effect size is greater than
the estimated effect of 1% found in the original analysis
(see Table 1). In Figure E.1 of Appendix E on p. 16, as
a robustness check, we show that the same analysis with
the refinement based on 1-year period yields essentially
the same results.

In sum, our analysis implies that the positive effect of
democracy is driven by the negative effect of authoritar-
ian reversal. We find that the transition into democracy
from autocracy does not necessarily lead to a higher level
of development. Rather, the treatment of backsliding into
autocracy from democracy has a pronounced negative ef-
fect on development at least in the short and medium
term.9

Next, Figure 7 shows the results based on matching
methods for estimating the ATT of interstate war on in-
heritance tax. The upper panel shows the estimates based
on the refinement of matched sets while adjusting for

9The original authors also seek to separately estimate the effects of
democratic transition and authoritarian reversal, using the linear
regression models. Appendix F on p. 16 discusses this approach in
detail. The empirical results obtained from this approach substan-
tively differ from those presented here.

FIGURE 6 Estimated Average Effects of Democracy on Logged GDP per Capita

Note: The estimates are based on the matching method that adjusts for the treatment and covariate histories during the 4-
year period prior to the treatment, that is, L = 4. The estimates for the average effects of democratization (upper panel) and
authoritarian reversal (lower panel) are shown for the period of 5 years after the transition, that is, F = 0, 1, . . . , 4, with 95%
asymptotic confidence intervals as vertical bars. Five different refinement methods are considered and their results are presented
in different columns
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FIGURE 7 Estimated Average Effects of Interstate War on Inheritance Tax Rate

Note: The matching method adjusts for the treatment and covariate histories during the 1- (upper panel) or 4 (lower panel) year
period prior to the treatment. The estimated effects are shown for the period of 5 years after the war, that is, F = 0, 1, . . . , 4,
with 95% asymptotic confidence intervals as vertical bars. Five different matching/weighting methods are considered and their
results are presented in different columns

the treatment and covariates from 1 year period prior to
the treatment. In contrast, the lower panel presents the
estimates based on the adjustment for the 4-year pre-
treatment period. As in the previous figure, each col-
umn represents the results based on a different match-
ing/weighting method, and the vertical bars indicate the
95% asymptotic confidence intervals.

We find that if we refine the matched set using the
1-year pretreatment period, most of the estimated ef-
fects are not statistically significant. All of the estimated
causal effects are not statistically significant if we refine
the matched sets by adjusting for the 4-year pretreatment
period. This sensitivity may come from the fact that as
shown in the right panel of Figure 1 there is little vari-
ation in the treatment variable of this study. Our analy-
sis suggests that it is difficult to conclusively establish the
positive effects of war on inheritance tax rate.

Concluding Remarks

Due to its simplicity and transparency, matching meth-
ods have become part of tool kit for empirical researchers

who wish to estimate causal effects in observational stud-
ies. Yet, most matching methods have been developed for
causal inference with cross-sectional data. We fill this gap
by developing a methodological framework that enables
the application of matching methods to causal inference
with TSCS data. A main advantage of the proposed
methodology over popular linear regression models
with fixed effects is that it clarifies the source of infor-
mation used to estimate counterfactual outcomes. In
addition, our methods offer simple diagnostics through
balance checking.

The proposed methodology can be extended in a
number of ways. First, although we focus on the binary
treatment variable in this article, the method can be
extended to deal with a nonbinary (e.g. continuous)
treatment variable by possibly combining it with a
model-based approach. Second, it is of interest to relax
the assumption of no interference across units. Although
we allow for some degree of carryover effects (i.e. the
possibility that past treatments affect future outcomes),
the proposed methodology assumes the absence of
spillover effects (i.e. one unit’s treatment does not affect
the outcomes of other units). Within the proposed
matching framework, we can address this limitation by,
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for example, matching on the treatment history of one’s
neighbours as well as its own treatment history. We plan
to explore such extensions of the proposed methods in
our future research.
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