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Difficulties of Observational Studies

@ Observational studies ~ No randomized treatment assignment
@ Confounding:
{Yi(1), vi(0)} L T;
@ Treatment assignment mechanism is often unknown
@ Possible existence of observed and unobserved confounders

@ Credible causal inference in observational studies

What is your identification assumption/strategy?

@ In causal inference, identification precedes statistical inference:
@ Identification: How much can you learn about the estimand if you
had an infinite amount of data?
@ Statistical Inference: How much can you learn about the estimand
from a finite sample?
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Identification of the Average Treatment Effect

@ I|dentification assumptions:
@ Overlap / Positivity (i.e., no extrapolation):

0<Pr(Ti=1|X;=x) < 1foranyx

@ Unconfoundedness (exogeneity, ignorability, no omitted variable,
selection on observables, etc.)

{Yi(1),Yi(0)} LLT; | X; = x for any x
@ Under these assumptions:
T = E{Y(1) - Yi(0)}

E[E{Y;(1) - Yi(0) | Xi}]

= E[E{Y(1)| Ti=1,X} —E{Yi(0) | Ti = 0,X}]

(overlap + unconfoundedness)

= E{m(Xi) — po(Xi)}

where p(X) =E(Y; | Ti=t,X; =x) fort =0, 1
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Regression-based Causal Estimation

@ Two general regression-based estimators:
@ Plug-in estimator:

g = S {7 (X) ~ fio(X)}
i=1

@ Imputation estimator:

IS T~ X)) + (1= T (%) — Y3
i=1

?'reg-imp =

@ Linear regressions (with/without interactions) ~~ use coefficients
@ Nonlinear regressions: e.g., Logistic regression

Treg —

1 Z exp(G+0-1+X[4)  exp(é+5-0+X4)
N [ 1+ep(@+ 5 1+X74) 1 +exp(@+5-0+X/4)
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Asymptotic Variance Calculation

@ Delta method for the conditional variance:

V(freg | X) (Z fir (X Xj) | X>

Z{V i) [ X) + V(fio(X;) | X)

—2Cov(fi1 (X)), fio(X;) | X)}

n2

n
+ ) Cov(ar (X)) — fio(Xy), i (Xir) — fio(X;) | X)
=1 i
@ Bootstrap for the unconditional variance:

@ Independently sample n observations with replacement

@ Fit a regression model and compute Treg

@ Quasi-Bayesian Monte Carlo (Zelig; King et al. 2000. Amer. J. Political Sci):

@ Sample (o, 3,7) from N ((&, 3, %), V((&, 8,4)))

©Q Compute Freg 5/



Sensitivity Analysis for Linear Regression

@ Linear regression model:
Yi = a+ BT+~ Xi+ 06U +¢
where U; is an unobserved (scalar) confounder
@ Recall the omitted variable bias formula:
Cov(T;™, UiX)

3P
8 — B+0X V(T,.LX)

regression of Ui-X on TAX

@ Partial R? formulation (Cineli and Hazlett. 2020. J. R. Stat. Soc. B):

Re ux V(YT
YeuTx X X
MU R?’~U|X V(T+X)
]

where ed., R?/Nu‘ T.X — (R2Y~U+T+X - R2Y~T+X) / (1 - R%NT+X)
—_———

partial R2 additional variance explained by U  unexplained by T ,X

lbias| = | R
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Sensitivity Analysis Results

@ Linear regression estimate: $1548 (s.e. = $750)
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Selection Bias as Misspecification (Heckman. 1978. Econometrica)

@ The outcome model: Y; = a+ BT +~"X;+¢;
@ The selection model: T; = 1{T > 0} with T} = X+ X[ 6 +n;
which equals the probit model if n; "< A/(0, 1)
@ Selection bias: E(e; | T;, X;) # 0 if ¢, Ln; | X;
E(Y [ X, Ti=1) = a+B+7 Xi+E(¢ | X, Ti=1)
= a+ B8+ Xi+E( | Xi,ni > —A—3'X))
E(Yi [ X, Ti=0) = a+v X +E(¢|Xi,n < —A—38"X))

@ Selection bias as a specification error
e Bivariate normal assumption:

()= () (2 )]

e Inverse Mill’s ratio

d(A+TX))
S(Wi(A+07X))
@ Two-step estimation; Identification by parametric assumption

E(ei | Xi, Ti) = Wipo where W; = 2T; — 1
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Control Function Method

@ Control function: a variable that, when adjusted for, renders an
otherwise endogenous treatment variable exogenous

@ Instrumental variables needed for nonparametric identification

@ An alternative formulation of the two-stage least squares

@ Regress T; on Z and X; and get residuals 7;
@ Regress Y; on T}, X;, and residuals 7);

~ fj; is a control function

@ Nonparametric identification (Imbens and Newey. 2009. Econometrica)
e Triangular system:

Yi = f(Tie)
TI = Q(Z/ﬂ?/)

where Z; 1L {¢;, n;)
e C;=Pr(T; <t]Z)is acontrol function: ¢; LL T; | C;
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