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Difficulties of Observational Studies

Observational studies No randomized treatment assignment
Confounding:

{Yi(1),Yi(0)} 6⊥⊥ Ti

Treatment assignment mechanism is often unknown
Possible existence of observed and unobserved confounders

Credible causal inference in observational studies

What is your identification assumption/strategy?

In causal inference, identification precedes statistical inference:
1 Identification: How much can you learn about the estimand if you

had an infinite amount of data?
2 Statistical Inference: How much can you learn about the estimand

from a finite sample?
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Identification of the Average Treatment Effect

Identification assumptions:
1 Overlap / Positivity (i.e., no extrapolation):

0 < Pr(Ti = 1 | Xi = x) < 1 for any x

2 Unconfoundedness (exogeneity, ignorability, no omitted variable,
selection on observables, etc.)

{Yi (1),Yi (0)} ⊥⊥Ti | Xi = x for any x

Under these assumptions:

τ = E{Yi(1)− Yi(0)}
= E[E{Yi(1)− Yi(0) | Xi}]
= E [E{Yi(1) | Ti = 1,Xi} − E{Yi(0) | Ti = 0,Xi}]

(overlap + unconfoundedness)

= E{µ1(Xi)− µ0(Xi)}

where µt (x) = E(Yi | Ti = t ,Xi = x) for t = 0,1
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Regression-based Causal Estimation

Two general regression-based estimators:
1 Plug-in estimator:

τ̂reg =
1
n

n∑
i=1

{µ̂1(Xi )− µ̂0(Xi )}

2 Imputation estimator:

τ̂reg-imp =
1
n

n∑
i=1

[Ti{Yi − µ̂0(Xi )}+ (1− Ti ){µ̂1(Xi )− Yi}]

Linear regressions (with/without interactions) use coefficients
Nonlinear regressions: e.g., Logistic regression

τ̂reg =
1
n

n∑
i=1

{
exp(α̂ + β̂ · 1 + X>

i γ̂)

1 + exp(α̂ + β̂ · 1 + X>
i γ̂)

−
exp(α̂ + β̂ · 0 + X>

i γ̂)

1 + exp(α̂ + β̂ · 0 + X>
i γ̂)

}
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Asymptotic Variance Calculation

Delta method for the conditional variance:

V(τ̂reg | X) =
1
n2V

(
n∑

i=1

µ̂1(Xi)− µ̂0(Xi) | X

)

=
1
n2

[
n∑

i=1

{V(µ̂1(Xi) | X) + V(µ̂0(Xi) | X)

−2Cov(µ̂1(Xi), µ̂0(Xi) | X)}

+
n∑

i=1

∑
i ′ 6=i

Cov(µ̂1(Xi)− µ̂0(Xi), µ̂1(Xi ′)− µ̂0(Xi ′) | X)


Bootstrap for the unconditional variance:

1 Independently sample n observations with replacement
2 Fit a regression model and compute τ̂reg

Quasi-Bayesian Monte Carlo (Zelig; King et al. 2000. Amer. J. Political Sci):
1 Sample (α, β,γ) from N ((α̂, β̂, γ̂), ̂V((α̂, β̂, γ̂)))
2 Compute τ̂reg 5 / 9



Sensitivity Analysis for Linear Regression

Linear regression model:

Yi = α + βTi + γ>Xi + δUi + εi

where Ui is an unobserved (scalar) confounder
Recall the omitted variable bias formula:

β̂
p−→ β + δ ×

Cov(T⊥X
i ,U⊥X

i )

V(T⊥X
i )︸ ︷︷ ︸

regression of U⊥X
i on T⊥X

i

Partial R2 formulation (Cineli and Hazlett. 2020. J. R. Stat. Soc. B):

|b̂ias| =

√√√√√R2
Y∼U|T ,X ×

R2
T∼U|X

1− R2
T∼U|X

×
̂V(Y⊥X,T

i )

V̂(T⊥X
i )

where e.g., R2
Y∼U|T ,X︸ ︷︷ ︸

partial R2

= (R2
Y∼U+T+X − R2

Y∼T+X)︸ ︷︷ ︸
additional variance explained by U

/ (1− R2
Y∼T+X)︸ ︷︷ ︸

unexplained by T ,X
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Sensitivity Analysis Results

Linear regression estimate: $1548 (s.e. = $750)

partial R2 from regression of T on U given X
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Selection Bias as Misspecification (Heckman. 1978. Econometrica)

The outcome model: Yi = α + βTi + γ>Xi + εi
The selection model: Ti = 1{T ∗i > 0} with T ∗i = λ+ X>i δ + ηi

which equals the probit model if ηi
i.i.d.∼ N (0,1)

Selection bias: E(εi | Ti ,Xi) 6= 0 if εi 6⊥⊥ηi | Xi

E(Yi | Xi ,Ti = 1) = α + β + γ>Xi + E(εi | Xi ,Ti = 1)

= α + β + γ>Xi + E(εi | Xi , ηi > −λ− δ>Xi)

E(Yi | Xi ,Ti = 0) = α + γ>Xi + E(εi | Xi , ηi < −λ− δ>Xi)

Selection bias as a specification error
Bivariate normal assumption:(

εi
ηi

)
i.i.d.∼ N

[(
0
0

)
,

(
σ2 ρσ
ρσ 1

)]
Inverse Mill’s ratio

E(εi | Xi ,Ti ) = Wiρσ
φ(λ+ δ>Xi )

Φ(Wi (λ+ δ>Xi ))
where Wi = 2Ti − 1

Two-step estimation; Identification by parametric assumption
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Control Function Method

Control function: a variable that, when adjusted for, renders an
otherwise endogenous treatment variable exogenous
Instrumental variables needed for nonparametric identification

An alternative formulation of the two-stage least squares
1 Regress Ti on Zi and Xi and get residuals η̂i
2 Regress Yi on Ti , Xi , and residuals η̂i

 η̂i is a control function

Nonparametric identification (Imbens and Newey. 2009. Econometrica)

Triangular system:

Yi = f (Ti , εi )

Ti = g(Zi , ηi )

where Zi⊥⊥{εi , ηi )
Ci = Pr(Ti ≤ t | Zi ) is a control function: εi⊥⊥Ti | Ci
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