Regression with Observational Data

Kosuke Imai

Harvard University

Spring 2021

Difficulties of Observational Studies

- Observational studies → No randomized treatment assignment
- Confounding:

$$\{Y_i(1), Y_i(0)\} \not\perp \!\!\! \perp T_i$$

- Treatment assignment mechanism is often unknown
- Possible existence of observed and unobserved confounders
- Credible causal inference in observational studies
 What is your identification assumption/strategy?
- In causal inference, identification precedes statistical inference:
 - Identification: How much can you learn about the estimand if you had an infinite amount of data?
 - 2 Statistical Inference: How much can you learn about the estimand from a finite sample?

Identification of the Average Treatment Effect

- Identification assumptions:
 - Overlap / Positivity (i.e., no extrapolation):

where $\mu_t(\mathbf{x}) = \mathbb{E}(Y_i \mid T_i = t, \mathbf{X}_i = \mathbf{x})$ for t = 0, 1

$$0 < \Pr(T_i = 1 \mid \mathbf{X}_i = \mathbf{x}) < 1 \text{ for any } \mathbf{x}$$

Unconfoundedness (exogeneity, ignorability, no omitted variable, selection on observables, etc.)

$$\{Y_i(1), Y_i(0)\} \perp \!\!\!\perp T_i \mid \mathbf{X}_i = \mathbf{x} \text{ for any } \mathbf{x}$$

• Under these assumptions:

$$\begin{split} \tau &= & \mathbb{E}\{Y_i(1) - Y_i(0)\} \\ &= & \mathbb{E}[\mathbb{E}\{Y_i(1) - Y_i(0) \mid \mathbf{X}_i\}] \\ &= & \mathbb{E}\left[\mathbb{E}\{Y_i(1) \mid T_i = 1, \mathbf{X}_i\} - \mathbb{E}\{Y_i(0) \mid T_i = 0, \mathbf{X}_i\}\right] \\ &\quad \text{(overlap + unconfoundedness)} \\ &= & \mathbb{E}\{\mu_1(\mathbf{X}_i) - \mu_0(\mathbf{X}_i)\} \end{split}$$

Regression-based Causal Estimation

- Two general regression-based estimators:
 - Plug-in estimator:

$$\hat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \{ \hat{\mu}_{1}(\mathbf{X}_{i}) - \hat{\mu}_{0}(\mathbf{X}_{i}) \}$$

Imputation estimator:

$$\hat{\tau}_{\text{reg-imp}} = \frac{1}{n} \sum_{i=1}^{n} \left[T_i \{ Y_i - \hat{\mu}_0(\mathbf{X}_i) \} + (1 - T_i) \{ \hat{\mu}_1(\mathbf{X}_i) - Y_i \} \right]$$

- Linear regressions (with/without interactions) → use coefficients
- Nonlinear regressions: e.g., Logistic regression

$$\hat{\tau}_{\text{reg}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{\exp(\hat{\alpha} + \hat{\boldsymbol{\beta}} \cdot \mathbf{1} + \mathbf{X}_{i}^{\top} \hat{\boldsymbol{\gamma}})}{1 + \exp(\hat{\alpha} + \hat{\boldsymbol{\beta}} \cdot \mathbf{1} + \mathbf{X}_{i}^{\top} \hat{\boldsymbol{\gamma}})} - \frac{\exp(\hat{\alpha} + \hat{\boldsymbol{\beta}} \cdot \mathbf{0} + \mathbf{X}_{i}^{\top} \hat{\boldsymbol{\gamma}})}{1 + \exp(\hat{\alpha} + \hat{\boldsymbol{\beta}} \cdot \mathbf{0} + \mathbf{X}_{i}^{\top} \hat{\boldsymbol{\gamma}})} \right\}$$

Asymptotic Variance Calculation

Delta method for the conditional variance:

$$\begin{split} \mathbb{V}(\hat{\tau}_{\text{reg}} \mid \mathbf{X}) &= \frac{1}{n^2} \mathbb{V}\left(\sum_{i=1}^n \hat{\mu}_1(\mathbf{X}_i) - \hat{\mu}_0(\mathbf{X}_i) \mid \mathbf{X}\right) \\ &= \frac{1}{n^2} \left[\sum_{i=1}^n \left\{ \mathbb{V}(\hat{\mu}_1(\mathbf{X}_i) \mid \mathbf{X}) + \mathbb{V}(\hat{\mu}_0(\mathbf{X}_i) \mid \mathbf{X}) \right. \\ &\left. - 2\text{Cov}(\hat{\mu}_1(\mathbf{X}_i), \hat{\mu}_0(\mathbf{X}_i) \mid \mathbf{X}) \right\} \\ &+ \left. \sum_{i=1}^n \sum_{i' \in I} \text{Cov}(\hat{\mu}_1(\mathbf{X}_i) - \hat{\mu}_0(\mathbf{X}_i), \hat{\mu}_1(\mathbf{X}_{i'}) - \hat{\mu}_0(\mathbf{X}_{i'}) \mid \mathbf{X}) \right] \end{split}$$

- \bullet Independently sample n observations with replacement
- 2 Fit a regression model and compute $\hat{\tau}_{\text{reg}}$
- Quasi-Bayesian Monte Carlo (Zelig; King et al. 2000. Amer. J. Political Sci):
 - Sample (α, β, γ) from $\mathcal{N}((\hat{\alpha}, \hat{\beta}, \hat{\gamma}), \mathbb{V}((\hat{\alpha}, \hat{\beta}, \hat{\gamma})))$
 - $oldsymbol{2}$ Compute $\hat{ au}_{\mathsf{reg}}$

Sensitivity Analysis for Linear Regression

Linear regression model:

$$Y_i = \alpha + \beta T_i + \gamma^{\top} \mathbf{X}_i + \delta U_i + \epsilon_i$$

where U_i is an unobserved (scalar) confounder

• Recall the omitted variable bias formula:

$$\hat{\beta} \stackrel{p}{\longrightarrow} \beta + \delta \times \underbrace{\frac{\operatorname{Cov}(T_i^{\perp \mathbf{X}}, U_i^{\perp \mathbf{X}})}{\mathbb{V}(T_i^{\perp \mathbf{X}})}}_{\text{regression of } U_i^{\perp \mathbf{X}} \text{ on } T_i^{\perp \mathbf{X}}}$$

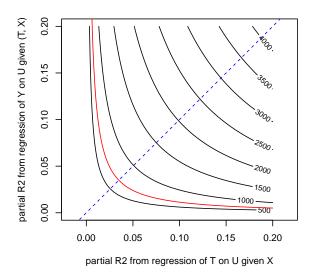
• Partial R² formulation (Cineli and Hazlett. 2020. J. R. Stat. Soc. B):

$$|\widehat{\text{bias}}| = \sqrt{R_{Y \sim U|T, \mathbf{X}}^2 \times \frac{R_{T \sim U|\mathbf{X}}^2}{1 - R_{T \sim U|\mathbf{X}}^2} \times \frac{\widehat{\mathbb{V}(Y_i^{\perp \mathbf{X}, T})}}{\widehat{\mathbb{V}(T_i^{\perp \mathbf{X}})}}$$

where e.g.,
$$\underbrace{R_{Y \sim U|T, \mathbf{X}}^2}_{\text{partial } R^2} = \underbrace{\left(R_{Y \sim U+T+\mathbf{X}}^2 - R_{Y \sim T+\mathbf{X}}^2\right)}_{\text{additional variance explained by } U} / \underbrace{\left(1 - R_{Y \sim T+\mathbf{X}}^2\right)}_{\text{unexplained by } T, \mathbf{X}}$$

Sensitivity Analysis Results

• Linear regression estimate: \$1548 (s.e. = \$750)



Selection Bias as Misspecification (Heckman. 1978. Econometrica)

- The outcome model: $Y_i = \alpha + \beta T_i + \gamma^{\top} \mathbf{X}_i + \epsilon_i$
- The selection model: $T_i = \mathbf{1}\{T_i^* > 0\}$ with $T_i^* = \lambda + \mathbf{X}_i^{\top} \boldsymbol{\delta} + \eta_i$ which equals the probit model if $\eta_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$
- Selection bias: $\mathbb{E}(\epsilon_i \mid T_i, \mathbf{X}_i) \neq \mathbf{0}$ if $\epsilon_i \not\perp \!\!\! \perp \eta_i \mid \mathbf{X}_i$

$$\mathbb{E}(Y_i \mid \mathbf{X}_i, T_i = 1) = \alpha + \beta + \gamma^{\top} \mathbf{X}_i + \mathbb{E}(\epsilon_i \mid \mathbf{X}_i, T_i = 1)$$

$$= \alpha + \beta + \gamma^{\top} \mathbf{X}_i + \mathbb{E}(\epsilon_i \mid \mathbf{X}_i, \eta_i > -\lambda - \delta^{\top} \mathbf{X}_i)$$

$$\mathbb{E}(Y_i \mid \mathbf{X}_i, T_i = 0) = \alpha + \gamma^{\top} \mathbf{X}_i + \mathbb{E}(\epsilon_i \mid \mathbf{X}_i, \eta_i < -\lambda - \delta^{\top} \mathbf{X}_i)$$

- Selection bias as a specification error
 - Bivariate normal assumption:

$$\left(\begin{array}{c} \epsilon_i \\ \eta_i \end{array}\right) \stackrel{\text{i.i.d.}}{\sim} \mathcal{N} \left[\left(\begin{array}{c} 0 \\ 0 \end{array}\right), \left(\begin{array}{cc} \sigma^2 & \rho \sigma \\ \rho \sigma & 1 \end{array}\right) \right]$$

Inverse Mill's ratio

$$\mathbb{E}(\epsilon_i \mid \mathbf{X}_i, T_i) = W_i \rho \sigma \frac{\phi(\lambda + \boldsymbol{\delta}^\top \mathbf{X}_i)}{\Phi(W_i(\lambda + \boldsymbol{\delta}^\top \mathbf{X}_i))} \quad \text{where } W_i = 2T_i - 1$$

• Two-step estimation; Identification by parametric assumption

Control Function Method

- Control function: a variable that, when adjusted for, renders an otherwise endogenous treatment variable exogenous
- Instrumental variables needed for nonparametric identification
- An alternative formulation of the two-stage least squares
 - **1** Regress T_i on Z_i and X_i and get residuals $\hat{\eta}_i$
 - 2 Regress Y_i on T_i , X_i , and residuals $\hat{\eta}_i$
 - $\rightsquigarrow \hat{\eta}_i$ is a control function
- Nonparametric identification (Imbens and Newey. 2009. Econometrica)
 - Triangular system:

$$Y_i = f(T_i, \epsilon_i)$$

 $T_i = g(Z_i, \eta_i)$

where
$$Z_i \perp \!\!\! \perp \{\epsilon_i, \eta_i\}$$

• $C_i = \Pr(T_i \le t \mid Z_i)$ is a control function: $\epsilon_i \perp \!\!\! \perp T_i \mid C_i$